CFED project
Mesh adaptivity for fluid flow over uncertain
geometries

Vignesh Vittal-Srinivasaragavan

December 10, 2019

1 Introduction:

Adaptive meshes are very useful in the context of solving complex engineering problems
as they offer the flexibility to use coarser mesh everywhere but at locations of interest
and/or at locations of complex solution behavior. More accurate prediction of the so-
lution can be computed with better efficiency using adaptive meshing than using finer
mesh throughout the problem domain.

Mesh adaptation process typically involves computing the solution on a coarse mesh,
and based on some error parameter, the locations of complex solution behavior is iden-
tified and the mesh is refined at these locations. When uncertainties are involved in
a problem, it is not wise to demand the mesh to be refined adaptively every time the
solution is computed (since the solution is computed numerous times for different real-
izations of the uncertain parameters). In this project, a method to identify an adapted
mesh (which was adapted for some previous realization) and use it for a current real-
ization (based on the compatibility of said adapted mesh for the current realization)
is proposed. By eliminating the process of repeating the redundant adaptation steps,
significant computational time is saved.

2 Problem statement:

A steady state incompressible flow with an uncertain advection at inlet in channel over a
rectangular block of uncertain dimensions (aligned along the flow direction) is considered.
Position of center of the rectangle is considered to be fixed

Natural pressure outlet

—I7T 1 H i 7_
Wi =U. (1) | No slip wall Uy =0 /
IR
v=g/ p=10.005

Ueange=0 No slip surface

—
L y b(y,) E
- % (y2) E
b £
) aly,)
—
— .
! No slip wall u,,=0 v
Hx=4m

| 5l
Figure 1: CFD problem setup with boundary conditions
The uncertain parameters are
e Length of the rectangular block
a = U[350mm, 450mm| = a(y1) = ao + 50y; with ag = 400
e Width of the rectangular block
b =U[20mm, 60mm]| = b(y2) = by + 20y2 with by = 40
e Fluid inlet velocity

Winter = U[BM/ s, 10m/s]§ = Ux(y3) = 7.5+ 2.5y3

where y;s are the uniform random variable such that y; = U[—1, 1]. ag, by are the dimen-
sions of mean geometry. The flow parameters are chosen keeping in mind that the flow
will be laminar and steady state solution exist for the flow.

ay

A

Figure 2: Dimensionally uncertain rectangular object. Shaded area around the solid red
line (mean geometry) is the uncertainty in geometry

The quantity of interest are the expected drag force and its variance on the rectangular
block in the channel.

3 Formulation:

3.1 Incompressible flow equations:

The fluid is modeled as an incompressible fluid which is governed by the following set of
equations at steady state

Rzn = PU;U; 5 +p7i — Tij; — fz =0 vxe (2)

where R¢ and R}" are the strong form residual of the continuity (eq 1) and momen-
tum equations (eq 2). 7 = 2uVSu = 2u (% [Vu + VTuD is the viscous stress tensor.
The strong form equations are supplemented with the boundary conditions to make the
problem well posed. The boundary conditions are

u=U,i €Tl atinlet (3)
u=20 x € 'yay no slip wall (4)
u=20 x € I'yeer o slip rectangular surface (5)
p=20 2 € Iyuiier natural pressure outlet (6)

Finite element method is to be used to solve this CED problem. Therefore, the Galerkin
discrete weak form is given by

0= / [—arur + wifpujui; — fi} +wi{7; — poy;]
Q
/ quing — wi{Ti; — pdyn; }dl' Yw e W, q € Q (7)
My

W, Q are the discrete test function spaces. The computed solution based on the Galerkin
formulation is very unstable in the advection dominated flows, therefore, a stabilzed FE
method is implemented whose discrete form is obtained by adding few stabiltity terms in
the previous formulation as

0= / [—q,kuk -+ wi{pujui,j — fz} + wi,j{nj — p5”}]dQ
Q
+ / quiny — w;{Ti; — pdin;dl
I\,
+ Z/ |:(ij1'7]‘ + 2) TRy + Tcwi,iRc] dQd.
e € P
+ Z/ [wipﬁjuivj + ?Rg’lme;ﬂ”ui,k] Qe YweW,qe Q (8)

— m
Tij

A

with u; = . A set of non-linear equations are obtained when the trial and test
functions are written in terms of linear shape functions, which upon solving the solution
field is obtained and thereby the functional which in this case is the forces on the solid
body.

3.2 VDMS error estimator:

The spatial discretization is controlled with a posteriori error estimate. Hughes et al
[1] introduced an analytical error estimator of 1D steady advection-diffusion problem
which provides a pointwise exact error under certain conditions. Consider the advection-
diffusion problem

R(¢) = a;9; — K3 — [i (9)

In VMS method the solution is decomposed into an coarse scale solution ¢, which is
discretized in FE space and a fine scale solution ¢’, which can be used as a discretization
error. Using the fine scale Green’s function, the analytical form of the fine scale solution
is evaluated as

¢ (i, y5) = /le(xz‘ayj)R(CE)dQ Ty, y; € Q (10)

The VMS error computed at element level is described as the H1 semi-norm of the fine-
scale solution

€|y = [0elma.) = g 4 (11)
L2(Q)
Using the analytical green’s function it can be reduced to
el = 106l m0n = VETDIIR(9)[r2(0) (12)

where V¢, = ﬁ\/ Pe, coth(Pe.) — 1 is the element error parameter and Pe, = h2_: is
the cell Peclet number. The same can be extended to multi dimension advcetion diffusion
problem using asymptotic approximations of the advective and diffusive limits as

1
Ve = > (13)
Vi + 365583
with g;; = dfj fo while (eq 12) remains the same in multi-D problems. The incompress-

ible Navier-Stokes equations possess similar advective and diffusive properties, which
makes it easy to formulate its error estimator by extending the previously formulated
VMS error estimator for advection diffusion problem

Nsd
IENSGF(Q Z |6 Hl(Q (14)
€70 = VWNSHRW()N rz@.) (15)
1
Verr,NS _ (16)

‘ Vgt + 3V /G5 Gij

Once the solution field is computed by a solver, the posterior element error is computed
using (eq 14, 15, 16). The spatial discretization can then be controlled by specifying a
target element size for elements with high estimated error. The element size with VMS
error (when its defined as the H' norm of the fine scale solution) as

(17)

o ENS,cu'rr

1+M
|:héarg 2 6NS,targ
hcu'r'r

4 Workflow for the CFD-UQ problem:

The entire workflow for the given uncertain flow problem has 5 major aspects —

Initial meshing and mesh transformations

Fluid Solve

e FError-estimation

Mesh adaptation

Quantify uncertainty

4.1 Initial Meshing and Mesh transformations:

Simmetrix software is to used for mesh related operations which in this case are primarily
meshing and adapting the mesh. The initial mesh is created in simmterix, which can be
done using simmetrix GUI or shell scripts.

Due to the uncertainties in the solid body’s geometry, for every realization the mesh
needs to be consistent with the problem domain for that realization. To circumvent the is-
sue of creating a new geometry and meshing the same for every realization, a mesh-moving
technique (developed in [2] and later tested on similar problem in [3]) is to implemented.
In [2], the mesh movement is performed by treating the mesh as a linear elastic solid
governed by constitutive relations. The mesh i.e. elastic body is then subjected to dis-
placements at its boundaries (so that it transforms to the required geometry) and the
displacement field for interior nodes are solved based on these BCs. However, for the
sake of simplicity, the mesh movements in this project are prescribed using analytical
transformations.

In this project, all the mesh related operations are only performed on the base domain
which is considered as the domain that contains the base geometry (or mean geometry
i.e the solid red line in figure 2). Mesh created on the base geometry (here on referred to
as base mesh) will then be transformed to the actual domain of the problem using some
transformation. The following figure explains this mesh transformation for a realization
of solid geometry i.e M) from the base mesh My, 4,). Figure 3 shows the base and
transformed coarse mesh which is to be used as the initial mesh that gets adapted for
a given realization of the random variables. The base mesh is created in simmterix,
however the transformed meshes are shown only for the purpose of visualization. The
mesh transformations are not carried out simmterix.

FAVAVAVAVAVAN SV AVAN

Base mesh

Moved/Transformed
mesh

Figure 3: Mesh created on the base geometry (top—Mq,y)) is transformed by specified
displacements to the nodes consistent with the actual geometries to create the mesh at
(bottom—M,p))

The reason for carrying out such transformation is that the mesh remains topologi-

cally same which allows one to make comparison between different meshes even though
the domain geometry has changed.

Due to the linear nature of the problem geometry, the mesh transformations (also

linear) from base to original geomtery can be analytically described by the following
equations.

l,trans — xbase (i) |:L,base| < (10/2
Qo

base
T H a — ag
xt'rans — xbase + xbase — z |xbase| > (10/2
wbase] 2) \ag — H,

rans ase b ase
yrene =y (g) |y"*¢| < bo/2
0

base H
trans base base) Y b b()) base
_ A I > by/2 18

The displacements follow the constraints that the mesh nodes at the boundaries (wall
and rectangular surface) can only slide along the boundary (it cannot go beyond or
separate away from its respective boundaries). The transformation of mesh from base

geometry to the actual problem geometry is carried out by changing coordinates of the
nodes inside the CFD solver.

4.2 CFD Solver:

PHASTA CFD solver is to be used to compute the solution fields. Since the solver is
written for transient flows, the problem will be solved until steady state is reached. In
this case, the steady state is observed to have reached about after 2 seconds (for given
BCs and static initial conditions). So for every solve, the solver computes the solution
for 40 time steps which are 0.05s (At) apart from each other. The solution at ¢ = 2s is
taken as the steady state solution.

The inputs to the solver are always the geombc and restart file corresponding to
the base geometry. Mesh transformation is acheived through changing the nodal coordi-
nates inside the itrdrv() in the phSolver. Once the mesh displacements are specified in
itrdrv(), the solver will automatically compute the solution on the transformed mesh.
However, it should be noted that the appropriate transformation needs to be performed
before visualizing the solution on paraview, since the geombc file still corresponds to the
base geometry.

The solution of a test case computed on the base mesh (for base geometry, therefore
no transformations) for when U,, = 7.5m/s,a = ag, b = by using phasta’s incompressible
solver is shown below in figure 4.

pressure
-15e+07-10 5 0 5 10 15 20 25 34e+01

velocity Magnitude
0.0e+00 1 2 3 4 5 6 7 8 9 99e+00

Figure 4: Pressure (top) and velocity magnitude (bottom) fields

NOTE:

Similarly, the values for uncertain inlet velocities are also realized by editing the velocity
boundary conditions set in phSolver/common/genBC1.f. In the original model file, the
velocity boumdary conditions are the inlet is specified a flag value — 2019 in this case.
Then in the file phSolver/common/genBC1.f, an added script checks for all the nodes
with velocity magnitude 2019, and then replaces it with the velocity of the realization.

4.3 VMS error-estimator:

Once the solution is computed on transformed coarse base mesh, the VMS error can
be computed. However, for the purpose of comparing errors from different meshes, the
solution field needs to be transformed back to base mesh and the error is estimated.

e Do /-f”—__"“\\ VMS e T
u/i Xl x.m.ﬂ\“ —> Q (x%=), p(x*=)) - error _H\., g)
A S e estimator .

Figure 5: The solution is transformed to the base mesh and then the VMS error is
estimated

A C++ code is to be built that reads the final solution field, perform the necessary
transformation on to the base geometry, and then compute the element level VMS errors.
Once the error field is computed, the simmetrix mesh adapt routine can be invoked if it
is deemed necessary to adapt the mesh based on some error tolerance criteria.

A sample error field on a coarse mesh for the base geometry is shown in figure 6. For
the purpose of presentation, MATLAB based script was used to compute the error field.

error_NS
2.1e-04 05 1 15 2 25 3.1e+00

-_— ; : ‘]

Figure 6: Element error field — [V5] ;1

4.4 Mesh adaptation:

A code that uses the simmterix libraries and adapts a given mesh is ready and available.
The code adapts the current mesh based on the error field calculated on that mesh.

When a mesh needs to be adapted for a given realization, the computed solution field
is transformed on to the base mesh and then the error is estimated on this base mesh. The
adaptation process is then carried out on the base mesh with the computed element error
field. Once the base mesh is adapted, applying the same transformation, the adapted
mesh for the actual geometry corresponding to the realization is obtained.

(: NS.curr_ A
S
i e \ 1 .
Old | (
base mesh | Mesh Adapt > Adapted
\) base mesh
— . | .

The following plots depict the adaptation process for two cycles of adaptivity starting
from the base mesh used in the previous sections. The solution need not be transformed to
compute the error estimator since the solution was computed on the base un-transformed
mesh.

error_NS
2.1e-04 05 1 15 2 25 3.1e+00
| | | |

first adaptivity cycle

el
05 1

e

)

v

6.1e-05 0.1

Figure 7: Mesh adaptation process based on computed error-field for two cycles of

e vradry
oAt
T

SR LA

T
A

B

i~ "“qu
K
Vs
FANEAVA

VAYavAT
VYA s

‘v‘

[

v

PEbg

e
o
2

S
A
v

e
yaal

'V" 3

Y

o
o

02
|

e

=

N

9
T

6

Ve
0

|

Iox

S
Wi
N

P
i

R
At

s p
TR b

B,
iR
FaD
==
Has

i
e
)

S
< =y

WA
V4,
s

L

5
ave
25

vy

L

i,
)
)
'A\v‘
= o
Y
]
%

v,
Ay
&

0
4&{%'
=

i

=
YAV
e

i

oy
s
7ol

B
o
b

Do
A
U EI

7

FAVAN 200K
Sy
SR

ck

RYAY,

5
2

Pa¥ies
I

Y
VAV YA
LA

v
K

)
Py
o
i

error_NS
03 04 05
| | |

adaptivity
10

AR
;".‘ﬂ"#;;:‘é.?;b“v o
SRR
RN
ST e
[V e s Vavi i
e

F

or_NS

2%
s
.

2

A
0y
ol

i

il
LTAWAN
e

VAV
LT
Bk

15
|

v

S
7

AW
vnés}
e

il
R

LN
LAy !ﬂ'l‘ﬁ'ﬁwuk a0
LA AR A
n“!‘y"ﬂv‘ =7
=

B

I

06
|

A;é'i“‘fi‘i" 7
LA
e
S

07

a0

Py}
AN
A

X
4
Cava.v
ATAYRFANA STl
3 O TN,
SoaEad

fiv. v,
¥, =
) Eg‘g‘

8.7e-01

o)
L

bRy

VAV 3
N Ay
B

2
A7l
i

£

2
]
k]
2

4y
v,

KIREER

TN Y,
s
T
i'l»

I
RYAY
i

5y
&

55
V)
%

s
7

=)
o ;»a

4.5 Quantifying Uncertainty:

Dakota UQ software will be used for the purpose of uncertainty quantification. It employs
a non-intrusive generalized polynomial chaos based spectral methods to form a polyno-
mial expression for the functional (drag/lift forces on the solid body in this case) based
on computing the drag/lift forces for various instances of the uncertain parameters i.e
realizations.

The higher the polynomial order for the functional expansion, the more accurate
measure of the statistics obtained. As expected, depending on the polynomial order,
the number of computations required to evaluate the polynomial also increases exponen-
tially. Sparse grid based quadrature rules for integration of the polynomials and therefore
computation of polynomial coefficients is to be employed. For 3 random variables, the
following tables relates the sparse grid order, full polynomial order and the total number
of integration points i.e total number of computations required to compute the coeffi-
cients of the polynomial.

(SG level) | p3,. (total gpc order) | nf" (integration points)
1 7
2 31
4
6
8

111
351

l
1
2
3
4
5 1023

It is clearly evident from the table that phasta solver needs to called numerous number
of times in order to form a good polynomial approximation of the functionals. Therefore,
adapting the mesh at each and every call will be unnecessary since there is a very high
probability that the same adapted mesh will be obtained at multiple instances of solver
runs. To avoid the redundant adaptations, a new method to reuse the adapted mesh
based on comparing error field generated on the coarse mesh is introduced here.

4.5.1 Algorithm to re-use adapted mesh:

Consider a case where we have 2 levels of refinements (starting from a initial common
coarse mesh i.e MO mesh)

e For every realization, the error field on the MO coarse mesh is computed. If the MO
error field does not match with a previously stored list of MO error fields, then we
add the computed error field to the list of error fields. Then, based on the computed
(and stored) MO error field, the elements are refined to obtain a new mesh (say M1
mesh). This process is repeated for one more cycle to obtain the final mesh M2.
Therefore, every error-field on a M0 coarse mesh will correspond to final adapted
mesh M2

e When the computed MO error-field matches with a previously stored error-field
(within a allowed tolerance), then the adapted mesh corresponding to that error-
field will directly be used for the realization

11

The MO error field for a realization i (say eiv(%emMo) is said to have matched the MO

error field of realization j (say eiv(i.’)emMO), if for a specified tolerance value) << 1 it
satisfies
|€Ns,err,Mo _ 6NS,6TT,MQ|L2
67(1) e:(]) < €(tol) (19)

\ Nel,Mo N

The following flowchart defines the overall workflow, for a given set of realization
generated by the UQ driver (Dakota)

.—I_w —

Compute error field

solution

¥

error field

¥
add
initial

List of error fields
tolerance compare error fields | € ————————— computed on initial
mesh
i errar
| field to
X target error i the list

ne | pT==sees 1

Found error field

ithin tolerance % gan e | PV
| add
1 adapted
! mesh fo
1 the list
Listofadapted | | 7
meshes
¥
Check error on
adapted mesh
rror field within
target error?
yes Final
adapted
mesh
v ¥

compute functional

Figure 8: Overall workflow that incorporates the adaptive meshing algorithm

As mentioned before, for every realization the error computations are performed on

12

the solution field which is transformed to the base geometry. The mesh adaptation will
then be carried out on the base geometry with the computed error field. The adapted
final base mesh will then be transformed to the original geometry inside the phasta solver
and used accordingly.

5 Code Development

Existing softwares:

e Meshing: Simmterix
e CFD incompressible flow solver: Phasta

e UQ driver: Dakota

Developed codes:

e Mesh adaptivity code: A code adapt mesh.cc that uses simmterix libraries,
reads a stored element error field and adapts a given mesh based on a specified
element error tolerance (and other relevant mesh refine/coarsening parameters) is
already developed and working.

The code can be found here—

/lore/vittav/PHASTA/CFD_UQ_project/rect_plate/mesh _scripts/

adapt_mesh/adapt mesh.cc

NOTE: Mesh adaptation is performed in a 2D domain. This is possible because
the mesh is created on a 2D geometry and extruded in normal direction to get the
3D mesh. In order to obtain the coordinate/connectivity details in 2D from a 3D
initial mesh, a C++ code that uses simmetrix libraries is used.

The code can be found here —

/lore/vittav/PHASTA/CFD_UQ_project/rect_plate/mesh _scripts/

initial mesh/main.cc

After the mesh is adapted, the new adapted mesh is obtained in 2D. Therefore,
the 3D mesh (on which the PHASTA simulation is run) is obtained by once again
extruding the 2D mesh in the normal direction. This is also achieved by a C++
code that uses simmetrix libraries.

The code can be found here —

/lore/vittav/PHASTA/CFD_UQ_project/rect_plate/mesh _scripts/

extrude_mesh/main.cc

e Problem variables in PHASTA: The parameters that defines the geometry
of domain (both deterministic and stochastic) and the one relating to uncertain
velocity have to be declared and used inside PHASTA codes. 8 new variables

13

pertaining to the problem are added for this project. A new struct is declared in
/common/common_c.h whose members are the 8 variables mentioned. The following
snippets of the code are added to this file

extern struct {

int problem flag;
double vinlet curr;
double ab;

double a curr;
double bo;

double b curr;
double Hx;

double Hy;

} geomuq ;

L A
Irrent reaclization

Figure 9: struct where new variables are declared

#define sequence FortranCInterface GLOBAL (sequence, SEQUENCE)
#define amgvarr FortranCInterface GLOBAL (amgvarr, AMGVARR)
#define amgvari FortranCInterface GLOBAL (amgvari, AMGVARI)

#define geomuq FortranCInterface GLOBAL (geomuq, GEOMUQ)

#define MAXBLK 50000
#define MAXSURF 20
#define MAXTS 100
#define MAXTOP 5
#define MAXQPT 125
#define MAXSH 125

Figure 10: Creates a copy struct and its variables to be used in Fortran

The file common.h contains the common blocks and the data declaration needed for
the routines. The highlighted line is added in common _c.h

common /timdat/ time, CFLfld, CFLsld, Dtgl, Dtmax, alpha,
etol, lstep, ifunc, itseq, istep, iter,
nitr, almi, alfi, gami, almis, alfis,
gamiS, flmpl, flmpr, dtol(2), rtimevalue,
itimevalue, iCFLworst

o B -2 B ~o I v o]

common /geomuq/ problem flag, vinlet curr, a@, a curr, b@®, b curr, Hx, Hy
common /timpar/ LCtime, ntseq

common /incomp/ numegns(180), minIters, maxIters,

& iprjFlag, nPrjs, ipresPrjFlag, nPresPrjs,
& prestol, statsflow(6), statssclr(6),
& iverbose
C
character*8 ccode

common /mtimerl/ ccode(13)

Figure 11: Input variables that have been previously declared in common _c.h have to be
re-declared here, in a consistent block fashion

14

For the current problem, the problem flag is declared as 2019 in solver.inp file.
In the /common/input_fform.cc the values for other 7 variables is read from the
file rv_input.txt (which is generated by DAKOTA for each realization) as —

if ((int)inp.GetValue("Problem Flag") == 2019) {
std::ifstream rv _inp file("rv_ input.txt");
if (rv_inp file.is open()){
rv_inp file >> geomuq.vinlet curr;
rv_inp file >> geomuq.a0;
rv_inp file >> geomug.a curr;
rv_inp file >> geomuq.bO;
rv_inp file >> geomuq.b curr;
rv_inp file >> geomuq.Hx;
rv_inp file >> geomuq.Hy;
rv_inp file.close();
}
¥

Figure 12: Reading the inputs from rv_inputs.txt
For reference, the file rv_inputs.txt is created from rv_inputs.template which

is in the following format (comments in red are added for clarity, the actual file do
not contain any comments) —

{x1} %inlet velocity for current realization--vinlet_curr
0.4 %mean length of rectangle--a0
{x2} %length of rectangle for current realization--a curr
0.04 Y%mean width of rectangle--b0
{x3} %width of rectangle for current realization--b_curr
4.0 %length of domain--Hx
2.0 %width of domain--Hy

The values for x1,x2,x3 are replaced by Dakota (in rv_input.txt) for each real-
ization with appropriate values.

The modified codes (to read the inputs) can be found here —

/lore/vittav/PHASTA/phasta_SCOREC_CFDUQ/phSolver/common/common _c.h
/lore/vittav/PHASTA/phasta SCOREC_CFDUQ/phSolver/common/common.h
/lore/vittav/PHASTA/phasta SCOREC_CFDUQ/phSolver/common/input fform.cc

e Mesh transformation: The phasta solver is modified to transform the base mesh
coordinates (read from geombc file) to actual geometry based on the values of a
and b for the given realization. The mesh transformation is acheived by prescribing
displacements to the base mesh nodes accordingly as mentioned in (eq 18). In
phasta, the transformation is done inside itrdrv() as

15

my_above = (b_curr-b@)/(b0-Hy);
my below = (b _curr-b@)/bo;
mx_above = (a_curr-a@)/(ad-Hx);
mx_below = (a_curr-a0)/a0;
where (abs(x 1)).1t.(a@/2))
xo(:,1) = xo(:,1) + xo(:,1)*mx below

endwhere
where (xo(:,1).ge.(ad/2))

¥o0(:,1) = xo(:,1) + (xo(:,1)-(Hx/2))*mx above
endwhere
where (xo(:,1).le.-{a0/2))

xo(:,1) = xo(:,1) + (xo(:,1)+(Hx/2))*mx _above
endwhere

2)).1t. (b0/2))
,2) + xo(:,2)*my below

where (abs(xo(:
xo0(:,2) = xo(:
endwhere
where (xo(:,2).ge.(b0/2))
x0(:,2) = xo0(:,2) + (xo(:,2)-(Hy/2))*my above
endwhere
where (xo(:,2).le.-(b8/2))
¥o(:,2) = xo(:,2) + (xo(:,2)+(Hy/2))*my above
endwhere

The modified itrdrv() codes can be found here —

/lore/vittav/PHASTA/phasta SCOREC_CFDUQ/phSolver/incompressible/itrdrv.f

e Uncertain velocity: The file phSolver/common/genBC1.f is edited to set the
value of Uy, for a given realization. The field values at boundary conditions comes
from geombc file which is generated from the simmterix’s . smb (model file) and . sms
(mesh file) files. Since the model file is created on the base mesh, the inlet velocity
will be specified in the model file as the expected inlet velocity i.e Uy, = 7.5m/s.
This value will be rightly perturbed (based on the value of y3) as Uy, = 7.5 + 2.5y3
for a given realization inside genBC1()

where (abs(BCtmp(:,7)-2019.0).1t.0.00001)
BCtmp(:,7) = vinlet curr
endwhere

if (nsd .eq. 3) then
where (ibits(iBC,3,3) .eq. 7)
BC(:,3) = BCtmp(:,7) * BCtmp(:,4)

BC(:,4) = BCtmp(:,7) * BCtmp(:,5)
BC(:,5) = BCtmp(:,7) * BCtmp(:,6)
endwhere
endif

The modified genBC1.f file can be found here —
/lore/vittav/PHASTA/phasta_SCOREC_CFDUQ/phSolver/common/genBC1.f

e VMS error estimation: A C++ code (estimate_error.cpp) that reads the so-
lution field, transforms it to base mesh and then computes the element error field

16

is developed. Another c++ code was also developed that goes through the list of
MO error fields and return the number of matched error field. If no error field is
matched, then the computed MO error field will be added to the list and adapted
after.

‘ /lore/vittav/PHASTA/CFD_UQ_project/rect_plate/gen_scripts/VMS_error.cpp

e Dakota driver script: A shell script (dakota_driver_reuse.sh) that is executed
by dakota to run a particular realization is developed. This is the script that couples
the UQ driver (Dakota) to the solver (Phasta). The entire workflow depicted by
the flowchart in previous section is realized through this script.

The script can be found here —

‘ /lore/vittav/PHASTA/CFD_UQ_project/rect_plate/gen_scripts/dakota_driver_reuse.sh

Other shell scripts that were used in the process of mesh adaptation, error comparison
to find matched mesh and such can be found here —

‘ /lore/vittav/PHASTA/CFD_UQ_project/rect_plate/gen_scripts

The readme.txt file in the same folder contains the details of each script or code file
present

6 Results and Conclusions

In the tested cases, two cycles of adaptivity are performed from the coarse mesh to obatain
the final mesh. However, for a given realization, if the error on the Cy mesh matches with
previously adpated realization, that adapted mesh is direclty considered. This basically
eliminates computing the solution on C level meshes. For reference, Cy mesh has 2252
elements (same for all realizations); C; mesh has around 3500 elements and Cy mesh has
about 6300 elements.

The expectation and variance of the drag force is computed using the polynomial
chaos model. Sparse grid level 3 and 4 quadrature rules were implemented and results
are tabulated in the following tables —

lse | match tol reused mesh | Drag Force [N] % Error
count | % E \% E \Y
0.0 0 0% | 3.9813097239% — 02 | 3.0793907455¢ — 02 | — -
3| 0.006 51 | 46% | 4.1183857818e-02 3.1201013825¢-02 3.44% | 1.32%
0.005 37 | 33% | 3.9842328124e-02 3.2039922018¢-02 0.07% | 4.04%
reused mesh | Drag Force [N % Error
lsG | mateh tol =S Te— g : = Y E v
0.0 0 0% 4.4621994998e — 02 | 9.1298751794e — 04 | — —
4 0.005 193 55% | 4.5927465735e-02 9.8783490913e-04 2.92% | 8.1%
0.004 160 45% | 4.5450880554e-02 1.0149140082e-03 1.85% | 11.16%
0.003 114 32% | 4.4927919289e-02 9.3686751794e-04 0.68% | 2.61%

The following observations can be made from the tabulated results —

17

e In both table the each row is compared against the ones in bold (which is the case
where for all realization the mesh was adapted). This is the best estimation of the
Qol for a given level of sparse grid

e Reducing the matching tolerance reduces the number of realizations which reuses
a mesh. However, the estimated expectation value is more accurate

e The estimated variance do not show any pattern, primarily because accurate pre-
dictions of variance comes from higher order approximation of the Qol

The results suggest that the algorithm performs really well while estimating the ex-
pected drag force. However, the method is not entirely robust. There needs to be a
way to find the optimum match tolerance that saves significant computations while not
compromising the accuracy of estimated Qols. This needs to be further investigated on.
The mesh transformation step needs to be more robust too. Cases with large range in
geomteric uncertainty can often result in poorly deformed elements. In [2] (where the dis-
placements are obtained by solving the linear elastic model of the mesh) this is adressed
by altering the Jacobian (in the weak-form integral) using a non-negative stiffening power
x. Each element is stiffened by a factor (J¢)™X and x determines the degree by which the
smaller elements are rendered stiffer than the larger ones. Another thing to study further
is check how often a matched mesh in Cj level end up being a poor fit for a realization.
In that case, it is possible to have a tree like structure where subsequent level meshes can
be compared against if multiple meshes matched with a single mesh but only one ends
up being a good fit.

The results are stored in dakota output files which can be found here —
/lore/vittav/PHASTA/CFD_UQ_project/rect_plate/geomUQ_v2/results

The readme.txt file in /geomUQ_v2 folder contains the details on how to run a dakota
simulation. Dakota has to installed in order to run the simulation.

References:

[1] Hughes, T.J. & Feijo, G.R. & Mazzei, L. & Quincy, J.B. (1998). The variational
multiscale method — a paradigm for computational mechanics. Computer Methods in
Applied Mechanics and Engineering. 166. 3-24.

2] Stein, K. & Tezduyar, Tayfun & Benney, R. (2003). Mesh Moving Techniques for
Fluid-Structure Interactions with Large Displacements. Journal of Applied Mechanics.
70. 58-63. 10.1115/1.1530635.

[3] Skinner, Ryan & Doostan, Alireza & Peters, Eric & Evans, John & Jansen, Kenneth.
(2019). Reduced-Basis Multifidelity Approach for Efficient Parametric Study of NACA
Airfoils. ATAA Journal. 57. 1-11. 10.2514/1.J057452.

18

