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Abstract

The Variational Mulitscale formulation for deterministic and stochastic problems in 1D
Advection Diffusion and 1D Burgers Equation with dirichlet boundary condition are pre-
sented in this report. Linear finite element shape functions are used to represent the
physical domain, and spectral basis are used for stochastic domain. The VMS formula-
tion, in general requires a stabilization parameter to be defined which is a function of the
advection and diffusion parameter in the equation. The stochasticity of the problem is
assumed to be contributed by either an uncertain advection term or uncertain boundary
condition. Therefore, in the these cases the stabilization parameters are itself an uncer-
tain term. For the sake of convenience, the stabilization parameters are approximated
with their projection in generalized Polynomial chaos (gPC) basis. The unstability of
Galerkin methods for advection dominated problem is also highlighted in this work.

Introduction

VMS method was introduced as means for numerical methods to tackle problems with
multi-scale phenomenon. The need for such methods was justified by the lack of ro-
bustness of Galerkin approach in the presence of multi-scale phenomenon. The crux of
method is to decompose the solution variable u to a problem into sum of coarse-scale so-
lution u and fine-scale solution u’. We try to solve u’ analytically using fine-scale Green’s
function and subsequently use this to solve @ numerically. In most cases use of Linear
finite element shape functions results in huge simplifications in evaluating the Fine-scale
Green’s funtion.

In this work, the focus is on implementing VMS formulation [1] to effectively predict
the solutions to a problem in stochastic setting. The stochasticity of the problem is han-
dled by spectral representation of the solution in terms of gPC expansion of the random
variable [2]. The type of polynomial to be used for gPC expansion is based on the type
of distribution of the random variable. This work is limited to uniformly distributed
random variables, and hence, the lagrange polynomials are used in gPC expansion. The
stabilization parameter which is usually complex trancendental functions of problem pa-
rameters are encounterd during the VMS formualtion. A projection based approach is
developed to approximate the stabilization parameter as a gPC expansion [3].

The outline of the work is follows — VMS method is explained in the next section.
Determinsitic 1D problems are taken in subsequent section and its subsections; their
formulations and results to certain cases are presented. Next, formulations and results of
stochastic counterparts of the same problems are presented. Finally, the conclusions are
elucidated from the results obtained so far in the final conclusion section.

VMS method

Consider the following boundary value problem in space Q C R? where d > 1 with smooth
boundary I'. Find u : 2 — R such that

Lu= fin Q (1)
u=g¢gin [ (2)



where f, g are real functions in 2 and I respectively. Assume L is limited to second order

diiferential operator. The weak form of the problem would be:

Let 6 C H'(Q) and V C H'(Q2) with following properties

u=g Yu€od

w=0 YveV
Find v € 6 such that Vw € V

a(w,u) = (w, f)

(5)

where (-, ) is Ly inner product in Q and a(+, -) is bilinear from satisfying a(w, u) = (w, Lu).

The VMS solution to this problem can be obrained in the following way. Let

u=1u+u Yu€ed
w=w+w Yvey

(6)
(7)

i, w represent coarse scales while u’,w’ represent fine scale soultions. Let § = S
(coarse scale and fine scale trial solution space) and V = V @ V'(coarse and fine scale

weighting function space). Assume

t=gonl'Vaes
W =0onT Vu' €¢
w=0onT Vo€V
w=0onT Vue)

=~
o O
—_ — —

Assuming the following integration-by-parts holds true Vu, w, u’, w’' belonging to appro-

priate subspaces

Substituting, (6) and (7) onto (5)

a(w+w,u+u)=(w+w',f) VeV, vu eV

By the virtue of linear independence of w and w’ the problem can be split into 2:

Problem (1)

Problem (2)



(17) and (19) are obtained by using the (12-14) on (16) and (18). Assuming we solved u’
analytically, all that is left to do is to solve (17). We know Lu' = —(Lu — f). In order to
obtain v’ we use Green’s function for fine scales.

d(y) = - / ¢ (x.y)(La — £)d, (20)

(20) can be rewritten in terms of integral operator M’ as ' = M'(Lu — f). Substituting
in to the (17) we get the VMS weak form:

a(w,u) + (L*w, M'(Lu)) = (w, f) + (L0, M'(f)) VYw €V (21)

Under the assumption of linear finite elements and approximations such as 7 ~ —M’ and
g (z,y) = g.(x,y), (21) can be further simplified to its final form

a(w", u") =Y (Lra" roLat) = (o, f) =D (Lw" o f) Vo eV (22)

€ €

1 /
O dS.dS? 2
T meas(£2e) /Q /Q 9el, )Y, (23)

VMS for Deterministic 1D problems

where,

Advection-Diffusion Equation

For the case of 1D advection-diffusion problem

d d?
S Rl 24
£ de " da? (24)
and the corresponding adjoint is
d d?
. R 2
£ ﬁdw Vi (25)
The aim is to solve for u(z) € €,[0, 1], given f, 5,k : Q. — R, go and g; with
du  d*u
B% ks = (x) on Q, (26)
with dirichilet boundary conditions
u(0) = go & u(l) = g1 (27)

The VMS weak form of the problem is

ow Ou _ou ow , Ou _ ow
<%7"€£)Qz + <w75£>91 + 262 (5%77 5@)96 = (w0, f)a, + Ze: (ﬁ%ﬂ' f)Qe
(28)
Before proceeding to solve for the solution we need to compute the elemental stabilization

parameter 7¢. For this particular problem 7¢ can be computed analytically and can be
given as

he 1
e — 25 (coth(Pee) — P€€> (29)

where Pe, = % is the element Peclet number and h. is length of element.

The VMS solution can be obtained by the approximation @" = @4 /N4 where Nys are
linear shape functions. Similar approximations is also made for w in order to obtain the
solution.



Results

For f(z) = 0, the following cases were considered. (i) 2% = 40 ; (i) 2% = 100. and

2K

(#17) 8% = 200 Here, L = 1 which is measure of the domain. The equations were then

2K

subjected to the boundary conditions u(0) = 0 and u(1) = 1. The result plots are in

figures (1), (2) and (3).
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Instabilities in the Galerkin solution with increase in Pe, can be verified by oscillations

observed in the solution.



Burgers Equation

1D burgers equation is very much similar to 1D advection diffusion equation. The only
change here is that instead of S we have a u and instaed of k we have p. Therefore we
have,

cy A0 d3() _ 40 ()
E()——U%—deg ()_()%_Mdaﬁ (30)
The aim is to solve for u(z) € €,[0,1], given f,u: Q, — R, go and g; with
du d*u
U~ Hog = f(z) on Q, (31)
with dirichilet boundary conditions
u(0) = go & u(l) = g1 (32)

The formulation procedure remains similar but we encounter some difficulty due to the
non-linear nature of the problem. But this can easily resolved with some valid approxi-
amtions [4] and the final VMS weak form can be obtained as

ow Ou _ _Ou _Ow , Ou e _ow
(G, (mng), S (gmagy), = o+ X (a5 ms)

(33)
Once again 7¢ computed analytically and can be given by
h 1
€= = th(Pe.) — 34
T 5 <co (Pe.) Pee> (34)
where Pe, = ﬁ;ze is the element Peclet number and h, is length of element. Rewriting

everything in terms of linear shape functions basis w = C 'AN4 and u = D gNp. We arrive
at CAGA = 0 where

GA(b) - (NAaNBNC,m) DBﬁC + (NA,QJJMNB,;E) DB

+ Z (NBNA7:B7 TeNCND,m)QE ﬁBECDD

— (Nay ) =Y (NauN5, ™) D (35)

e

Implementing Newton-Raphson for the k' iteration

R = G[(.Dk) ...Residual

Ak
Jry= %] ...Jacobian (36)
D" =D — [ YR} (37)



Computing element level terms,

R;

(v

Ldu’

dx

)« (¥

du®
1,19 /"L d

o (v

€

Ldu’
dz

du‘

Je = (Ni,aezvjﬁx) ¥ (N Ny

)+ (o)

) (Ni, ) = (@ N, 7°f°)

_|_ < CNZ .:E?T TLEN]’:L) _|_ (eNz ;(;7 ) ( Z:L‘? u ) - ( ZI? 6f )
(38)
where,
nshl
i = DiN; (39)
i=1
dﬂe nshl )
= D;N; , 40
nshl
fo=>Y_fiN, (41)
i=1
Results

The analytical solution to burger’s equation can only be found for f(z) = 0. Even then,
we end up with a transcendental equation based on the boundary condition which has
infinitely many solution. The use of Newton-Raphson in such a case is not effective. So
in this study, manufactured solutions are first taken, and then the corresponding f(x) is
fed into the code to obtain the solution. One such case is presented in this report

Uezact (ZL’) =

1+z—

ev/c —1

el/e — 1 —

Some results are plotted in the figures (4)-(7).
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Once again, similar observations regarding the oscillations in Galerkin solution can
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be made for when the element Peclet number reaches a considerable value.



VMS for Stochastic 1D problems

In stochastic setting the trial and weighting solution spaces has to be redefined. The
solution spaces for the variational problem is obtained through a tensor product of suitable
trial spaces over the physical and stochastic domains.

d={ued,®d;u=gonl,} (42)
V={weV,®V,;w=00nl,} (43)

where ¢, and V, are similar to out previous definitions. But V,,d, = Lo(€2,), where Q,
is the stochastic domain of the problem. The new stochastic VMS weak form will be

E a(@",u")q, — Y (L'0", 7°Lu")q | = E

e

(@", o, — > _(L'0" 7 fas| VD€V
e (44)

where E is expectation operator defined by
Bl = [ (nt)a, (15)

p(y) is probability distribution fucntion of random vector y. While any number of random
variables can influence a physical system, this report only focuses on problems with one
uniformly distributed random variable. Therefore 4" and w" are approximated as tensor
product of Linear Finite elements for physical space (), and spectral basis for stochastic
domain €,

M M
w" = Z Z@QNA(@@(?J) " = Z Zﬁ}éNB(x)¢J(y) (46)
A B
where
(47)
Here ¢ is the number of random variable (q=1, througout this report) and p is the atmost

order of polynomial used.

Advection-Diffusion Equation with uncertain Advection term

Solve for u(x,y) € [, x Q] = R

ou 0%u

Bly)g, —wlz)z— =Ff Q°€[0,]] (48)

with dirichilet boundary conditions
u(0,y) = go & u(l,y) = g1 (49)

where, k(z) is deterministic and [(y) is uncertain function of random variable in y €
U[—1,1]. The VMS weak form is given by

B(w,u) = (w, f) (50)



The stabilization parameter is now given by

() = 5 ;( | <coth(Pee( ) — ﬁ) (53)
P€€<y) — |/3(2,1|he (54)

The stabilization parameter is a complicated transcendental function of the random vari-
ables. Therefore, the next objective is to approximate the stabilization parameter in
spectral basis. Doing this will reduce the complexity of the integrals by huge extent.
Firstly, we use the doubly-asymptotic approximation [5] to span the advective-diffusive
limit

()~ 75 (0) = ()2 + (7 0T) 2) (55
0= 755 (0
ety - e (57)

The approxiated 7¢(y) is then projected onto a spectral basis to obtain a gPC approxima-
tion of stabilization parameter %e(y). The details of the approxiamtion are well elucidated
in [3].

To obtain the VMS solution Linear Finite elements for physical space €2, and spectral
basis for stochastic domain €2, are used,

ZwANA U—ZUBNB (58)

Substituting onto VMS weak form,

E [(Nay01(y), 6Np .05 (y))a, + (Nadr(y), By)Np .0.(y))a, | ip+

E | (BW)Na01(y), 7 0)BH)Ns o0 (y))o ]ué
E | (Nag1(y), fla, + Z YINa01(y), 7 (y)f)ﬂz] (59)
which in matrix form yields
(K] {ig} = {F4} (60)
where,
Fi = (Na, NES1 ()] + D _(Naw, FIEB(Y)61(y)7(1)] (61)



Kip =(Nag, N 2 )E[1(y) 0 ()] + (Na, Np o) E[61(y) B(y) b (y)]+
> (N, No o )E[B)d1(y) 7 ()B(y) s (y)] (62)

e

The following approximations can be made for S(y), 7(y) and their products encoun-
tered in the expectation calculations.

Bly) =~ Bly) = Ki_l B (y) (63)

T(y) = 7(y) = T(y) = KXA; i (y) (64)

Bly)r(y) =(y) = é%«bx(y) (65)

Bly)r(y)By) = v (y)By) =~ nly) = ﬁ:l i Pxc(y) (66)

The coefficients 4 and 7) can be calculated same way as 7. Therefore,

Elo:(y)8 ~ Z BrE[¢ k(1Y) (y)] (67)
ElB(y)or(y)T ~ Z Z BrtiE[¢1(y) 0.1 (y) oK (v)] (68)
E[B(y)or(y)m(v)B(y)os(y)] = Z xElo1(y)or ()5 (y)] (69)

All the above expectation terms can be calculated analytically. The boundary conditions
are then implemented in the following way

w(0,y) = u(z1,y ZUBNB 1) ¢ (y Z% ¢s(y) since Na(z;) =0da;  (70)

U(l,y) = u(xnnpa ZUBNB Tnnp ¢J Z nnp (71)

Using spectral projection and the orthonormal property of the polynomials,

i /_ p(y)br(y)dy = Z@f / p()o1(y) b (y)dy = af VI (72)
o [ 0w =Sl / Gr)osydy = i, VI (13)

1

Results
The uncertain advection term is considered to be of the form S(y) = 1 + y* where
y € U[—1,1]. The analytical solution can be found for this equation when f(x) = 1.
Bw) Bw)
e~ +e T —1
Uezact (IL’, ?/) B(y)
Bly)(e~" —1)

10



Results for k = 0.001 for P = 2,4 are are presented in figures (8) and (9).
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The accuracy of VMS solution has improved when the maximum polynomial order P
is increased. This is mostly because the spectral projections of the variables eqns(63-66)
are truncated at higher order which is a better approximation than the former. However,
increasing the polynomial order will result in additional computational costs.

Burgers Equation with uncertain boundary term

Solve for u(x,y) € [, x Q,] = R

ou  d*u "
with dirichilet boundary conditions
u(0,y) = go (deterministic be) & u(1,y) = ¢1(y) (uncertain bc) (75)

The approximate VMS weak form copupled with linear FE shape function assumption
yields the following equation

du dw du dw du
E||w,u— — U— —u—,—71(y)u—
<w, udm)m * (dx ’ 'ud:v)m i Ze: < Yar T <y)ud$)m]
_dw .
e * 0
where,
T(y) = 7 (y) = (T°°"(y) "2 + (7o) 72)71/2 (77)
h
e,adv e
T (Y) = 5= (78)
2| (y)
) h?
Tol — < (79)
Ap
Once again we need to project 7¢(y) onto spectral basis to obtain the final approximate
stabilization parameter 7¢(y). The following approximations can be made for u¢, CfiL:, T

12



and their products

M nshl
u = Z (Z IzebJNbe(I)> ¢(y) = dy(z)ds(y) (80)
J=1 b=1
—e M nshl
Ccl;; = Z (Zde;)]Nbex<x>> ¢5(y) = Bs(x)ds(y) (81)
J=1 b=1
T(y) = 7(y) = 7(y) = 75(x)p,(y) (82)
ﬂefe = 0;(x)b.4(y) (83)
B0 = 45 (@), (y) (59
@ = 05(x)(y) (85)

All coefficients in the above equations are function of x and are to be evaluated at a
particular quadrature points while perorming the integrals in physical domain.
Implementing Newton Raphson and computing element level terms,

(ReY = (N6, 5El0:0500) |+ (Nua nBE00)]) |+ (Now B5ElD001])
,, s
— (No, Elgi]), — (Nao, f2057E[3i6508]) g,
419 = (N Mo i Bl + (Nos NiBEl6:6561])) |+ (Nas N2 Elgi,]) .

x

(
+ (Na o Ny 204 B[ ¢g¢k]> + (Na, Nb%E[Gb@j(?k])Qx + (NyNo ., %E[%%%])Qx
— (N,

2

a ¥ f Tk’E ¢Z¢j ¢k’]) (87)

AUg = [Jacljp \ {R}} (88)
Unew — Uold — AU (89)

Results

For the case when f(z) = 1 and the boundary conditions given by u(0,y) = 0 and
u(1,y) = y. Since, the analytical solution cannot be found, efficiency of the algorithm is
tested against individual realizations of boundary conditions to previously-verified deter-
ministic VMS code. The results for some selective cases are shown below.
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Figure 11: case(ii) 4 = 0.001 P =2
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Figure 12: case(iii) ¢ = 0.001 P =4

Conclusions

In order to perform detailed study of Stochastic VMS [3], [1] and [2] were throughly
surveyed. [1] explains a fundamental approach for VMS method and its formulation,
while [2] focuses on numerical methods to predict a stochastic system.

In this work, VMS formulations for deterministic and stochastic 1D problems are
presented. The results obtained presents a solid case for using VMS method over conven-
tional Galerkin method. Especially in cases where the element Peclet number reaches a
considerable value, the Galerkin method proves to be unstable. VMS tackles this with use
of stabilization parameter in its formulation. To incorporate the stabilization parameter
into the numerical method, a projection based approach is used which approximates the
parameter in spectral basis. The solutions obtained through VMS can also be improved
with increasing the polynomial order used, which comes at a computational cost. Further
investigations is deemed necessary for Stochastic Burger’s equation since for certain cases
the solution is not converging efficiently.

All the Finite Element codes used here were developed in MATLAB. They can be
found in the SCOREC’s file scratch lore in the following folder: \lore\vittav\FEM-Project
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