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Abstract

Numerical simulation of systems governed by partial differ-
ential equations ultimately leads to solving massive systems
of linear equations. We present a parallel conjugate gradi-
ent solver which employs a memory efficient Compressed
Row Storage data-structure. Two versions of the solver, a
CPU only (MPI) and CPU-GPU (CUDA) are developed and
compared in this study. The CPU only version of the solver
exhibits speedup with increase in number of processors. The
CPU-GPU solver although is faster, doesn’t show any scaling
which needs further investigation. But overall, we are able to
demonstrate the effectiveness of parallel conjugate gradient
solver which is a key to faster simulations.

Keywords: parallel linear solver, conjugate gradient algo-
rithm, MPI programming, MPI I/O, CUDA reduction, CUDA-
MPI

1 Introduction

Partial differential equations or PDEs can be used to describe
phenomena such as heat diffusion, electrostatics, electrody-
namics, fluid dynamics, elasticity, quantum mechanics etc.
Tremendous efforts have been made over the years to solve
theses equations numerically and simulate these phenomena.
Finite difference, finite volume or finite element are some
of the most popular methods. These methods discretize the
domain into small parts and the governing equations are
solved approximately. This leads to a system of linear equa-
tion. For large simulations, solving this system of equations
is computationally most expensive operation. Parallel im-
plementation of this operation can reduce the simulation
time significantly. The objective of the project is to develop a
parallel solver for system of linear equations using conjugate
gradient algorithm and benchmark its performance for weak
and strong scaling.

Dekker et al. [? ] has conducted a survey of different par-
allel algorithms for systems of linear equations. Lof [? ]
has developed a parallel conjugate gradient solver based
on shared memory architecture. There are multiple studies
like [? ], [? ] which demonstrate parallel conjugate gradient
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solver on multiple GPU platform. Schneider et al. [? ] out-
lined a strategy for parallel conjugate gradient method and
investigated influence of number of processors and different
floating point precision on the convergence. We have used
similar approach in this study to create a parallel conjugate
gradient solver.

In this study we have created a conjugate gradient solver
in C programming language which employs a Compressed
Row Storage (CRS) data-structure. The solver is parallelized
using MPI and CUDA. We have considered a simple 1D heat
equation problem which is solved using finite difference
technique. By varying number of grid points we can get sys-
tems of linear equations of varying sizes. The performance
of the solver is tested by running the only MPI version and
hybrid CUDA/MPI version across multiple ranks. The rest
of the report is organized as follows. In section 2 the con-
jugate gradient algorithm and the storage data structure is
discussed. In section 3 the parallelization strategy for the
solver is explained. Finally, in section 4 performance analysis
of the solver is presented.

2 Conjugate Gradient Solver

Solving PDEs numerically using finite difference or finite el-
ement technique leads to large system of matrix with sparse,
symmetric and positive definite coefficient matrix. Conjugate
gradient method [17] is suitable for solving such systems.
The conjugate gradient algorithm and the corresponding
storage data structure is explained in this section.

2.1 Conjugate Gradient Method
Consider the following system of linear equations.

Ax=Db (1)
Here, A is a known matrix of size nX n. It symmetric, positive
definite (i.e. x’Ax > 0 for all non-zero vector x in R").
Vector b is known while x is a solution vector. Conjugate
gradient method treats this as an optimization problem and

finds the solution x, attractively. The objective function used
in conjugate gradient method is as follows:

foo=3

Since matrix A is positive definite, the objective function
given in the Eq. (2) has a unique minimum. Considering

xTAx - xTb (2)
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the symmetric nature of matrix, the gradient of the given
objective function can be calculated as follows:

Vf(x)=Ax-b (3)

Hence, optimum of the Eq. (2) is the solution for the given
system of linear equations. Let P = {py, py,....P(,_1)} be
sequence of n linearly independent directions. As P forms
basis in R", we can express the solution of the system x. as
follows:

n—-1
X, = Xo + Z aip; (4)
i=0

Here, x is the initial guess. This can be considered as finding
the solution from an initial guess by taking steps in the

sequence of n linearly independent directions given by P.

The step size for each direction is denoted by «.

Given the initial guess xo, the gradient at this point is Axy—b.

According to steepest descent, the first step will be in the
direction of negative gradient i.e. p, = b — Ax(. The new
optimal location of x at any given (k + 1)th step is given as:

X(k+1) = Xk + APy 5)

The conjugate gradient algorithm insists that directions P
are mutually orthogonal. This can be achieved by enforcing
following condition:

T
p; Ary
Pr =Tk — § P; (6)
SipiAp

Here, ry, is the residual for the kth step given asry = b—Ax.

The optimal step size . is give as:

T
P Tk

p. AP,

(7)

A =

The resulting algorithm is as follows:

Algorithm 1 Conjugate Gradient Method

1: Initialize:
2: Yo = b - AXO
3: Po = To
4: k=0
5. while rr,; > tolerance do
T
P Tk
6: oy = —E—
k= T Ap,
7: Xf+1 = Xk t Ok Py
8: Ti41 = Xk — akApk
T
. o T Tkt
9: ﬁk = —l‘zl‘k
10 Pryp = Tt + PrPi

11: k==k+1
12: Return: xpq
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2.2 Compressed Row Storage Data-structure

The coefficient matrix obtained from finite difference or finite
element method is sparse in nature i.e. most of the entries
in the matrix are zero. Number of non-zero entries in the
sparse matrix varies from 4% for larger systems to 25% for
smaller systems. In such cases storing all zero values can
lead to excessive wastage of memory. This problem can be
circumvented by using a special data-structure to store the
matrix values. Compressed Row Storage (CRS) [4] is a very
popular data-structure used to store the sparse matrices effi-
ciently.

In CRS data-structure a sparse matrix M of size nXn is stored
using 3 one dimensional arrays. The array which stores non-
zero entries in the matrix is denoted as m_vec while their
corresponding column indices are stored in an array called
col_index. The third vector called here as row_index is used
to extract row elements from m_vec vector. If the number
of non-zero entries in the matrix is nnz then m_vec and
col_index has size nnz. The size of row_index is (nnz + 1)
as one extra padding element is added for the first row. To
extract ith row, first we calculate row_start = row_index][i]
and row_start = row_index[i]. The ith row elements are
extracted by slicing m_vec starting from row_start and end-
ing at row_end. The number of non-zero entries in ith row
is (row_end — row_start). This process is explained using a
following example. Consider a 4 X 4 matrix:

S O vl ©
AN O 0O
S W o o
S O O O

Using CRS data-structure matrix M is represented as follows:

m_vec = [5 8§ 3 6]
col_index = [O 1 2 1]
row_index = [0 0 2 3 4]

To extract elements in the first row, row_start and row_end
are calculated as follows:

row_start = row_index[1] =0
2

row_end = row_index|[2] =

Using these indexes row elements are extracted as m_vec[0 :
2] =[5 8] and the their corresponding column indices are
[0 1].

The CRS data-structure does not make any assumptions
about the sparsity pattern of the matrix. Buluc et al. [3] have
demonstrated efficiency of matrix-vector multiplication op-
eration using CRS data-structure in parallel environment. All
the operations presented in the algorithm 2.1 are performed
on the three arrays used in the data-structure.
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3 Parallel Conjugate Gradient Algorithm

The conjugate gradient solver is implemented in parallel
using both MPI and CUDA so that the solver can be run
across multiple multiple processors and GPUs. In this sec-
tion MPI and CUDA implementation of parallel algorithm is
explained. We also discuss use of MPI I/O for reading and
writing input/optupt files across different MPI ranks.

3.1 MPI Implementation

To implement the algorithm in parallel, the first step is to read
data from an input file and distribute it across the processors.
The obvious choice for data distribution is to divide the
coefficient matrix row wise. The coefficient matrix is divided
into blocks based on the number of processors and each
processor will be allocated with a particular block of rows.
As explained in Section 2.2, we use CRS data-structure to
store the rows i.e. we only store non-zero elements in the row.
Each processor will store the global row numbers allocated
to it, non-zero elements in those rows and corresponding
column indices. The matrix data-structure for an example
matrix M (given in the Section 2.2) using two processors is
illustrated in Fig. 1. The solution vector x is stored completely

Global Row Non-zero Column
Processor
Number Elements Index
0 =
0
1 5 0
8 ¥
1 2 3 2
6 |

Figure 1. Schematic representation of matrix data-structure
for each processor

on each processors.
The most time consuming linear algebra operations in the
conjugate gradient algorithm are as follows:

1. Matrix-vector multiplication
2. Scaled Addition of two vectors
3. Dot product of two vectors

Theses operations should be parallelized in an efficient way
to get the maximum speedup. The rest of the algorithm can
be used unchanged.

3.1.1 Matrix-vector Multiplication. Matrix-vector mul-
tiplication is used to calculate the residual in the conjugate
gradient algorithm. Consider a matrix-vector multiplication
y = Ax.
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The ith element in y can be expressed as:
n
Yy = Ajx = ZAi,ka 8)
k=1

In CRS data-structure we only store non-zero elements and
their corresponding column indices. Hence, the Eq. 8 can be

expressed as:
nnz

Y= . AvkXe, O)
k=1

Here, cj represents the column index for kth non-zero el-
ement in ith row. After parallelization the matrix vector
product will be computed on different ranks as

STING
ol B8
~ )l

In the above example, the serial matrix vector product is
parallelized with 3 processors. Each processor handles a
portion of the matrix and multiplies it with full vector x to
obtain the portion of the result vector. After the computation
is completed by all the processors, all the locally computed
elements are sent to all other processors. Better efficiency
is achieved if the rows are distributed evenly across the
processors.

3.1.2 Vector Addition. Consider an addition of two vec-
torsx+y=1zie.

Parallelizing the elementwise operations such as this with
multiple processors very straightforward

il
(i
RINISIN
Each processor will compute the sum of the specific set of

rows which it operates on and will store the partial results
in a local variable.
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3.1.3 Dot Product. Dot product operation between two
vectors is required for calculation of step size . The dot
product between two vectors of size n can be expressed as:

Xy = i Xiy;

Both of the vectors are similarly distributed across the
processors. Each processor calculates the partial dot product
corresponding to its allocated elements as

() el
o e
] e

The partial dot product for kth processor can be expressed
as follows:

L
=) Xy, (10)
i=fk

Here, fi and I are respectively first and last indices of el-
ements stored on kth processors. These partial dot prod-
ucts are sent to the master processor using MPI_Send and
MPI_Rec operations. The final dot product for m processors
is calculated on the mater processor as follows:

Xy = Z Sk (11)
k=1

Finally, every processor requires a copy of complete dot
product value for further operations. This achieved by MPI
broadcast operation (MPI_Bcast) where dot product value is
sent to all the processors from master processor.

3.2 CUDA Implementation

Graphical Processing Unit (GPU) is a relatively new tech-
nology which has brought a paradigm shift in the field of
high performance computing. It was originally developed
for rendering graphics albeit over the years it has become
indispensable for solving simulation problems hitherto con-
sidered computationally prohibitive. Here, we try to exploit
the putative computational power of GPU programming
for accelerating the performance of our conjugate gradient
solver. The strength of GPUs predicates on the multitude of
cores available for computation which empowers the user to
run numerous threads concurrently without context switch-
ing. CUDA, which is a general purpose parallel computing
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platform and programming model developed by NVIDIA is
commonly used for this purpose [14].

However, GPU programming is not apt for every compu-
tational problem and it needs to be carefully evaluated as
to how one could exploit the potential of this tool. Lee et
al. have debunked the myth of the hundred-fold improve-
ment in the performance of GPUs over CPUs through their
expository work [10]. It was shown that intelligent optimiza-
tion techniques could boost the performance of CPUs and
deliver results at a speed comparable to GPUs. Karunadasa
& Ranasinghe [9] implemented the Stranssen algorithm for
matrix multiplication and conjugate gradient for solving a
system of linear equations using a combination of MPI and
CUDA. MPI was used to deliver data to the GPUs which
in turn performed the computations to yield the final re-
sult. While significant improvement was observed in the
performance of the Stranssen algorithm, the conjugate gra-
dient algorithm failed to show an noteworthy speedup. The
authors attributed this to a lack of second level of paral-
lelism in the algorithm. However, certain application specific
CUDA implementations of the conjugate gradient solver
have yielded promising results. Maringnati et al [12] em-
ployed GPU programming for circuit simulation using a
preconditioned conjugate gradient algorithm and found a
speedup of upto 10 times relative to single-threaded CPU
implementation. Zhang et al. [19] observed similar speedups
for their implementation of a CUDA polynomial precondi-
tioned conjugate gradient for elasticity related FEM prob-
lems. CUDA implementation for fluid flow problems has also
bolstered the efficacy of the algorithm [1, 8]. Favorable per-
formance in variegated areas [6, 11, 13, 15, 16] has made the
technique a hugely popular tool for numerical computing.

In contrast to the aforementioned CUDA implementations
of conjugate gradient algorithm which make use of sophisti-
cated tricks, we employ simpler techniques like reduction
and seek to enhance the performance of the conjugate gradi-
ent algorithm used here. In the following section, we describe
the algorithms we used for the CUDA implementation.

3.2.1 Matrix-vector implementation. As explained in
previous sections, we use the CSR data structure for repre-
senting the sparse matrices. Several pedagogical works have
expounded the usage of CUDA for sparse matrix-vector prod-
uct (SpMV) computation using this representation (2, 5, 18].
Figure 3 illustrates how work is distributed for GPU compu-
tation of SpMV. This implementation functions at the level
of rows per thread. As the kernel is launched, each thread
computes the product corresponding to a single row of the
sparse matrix. We use MPI to allocate a chunk of the full
sparse matrix to a rank which is subsequently processed
by the GPU threads. As a common practice in CUDA pro-
gramming to make the code more portable, readable and
scalable, one can also use grid-stride loops for parallelizing
the loop using the kernel [7]. Schematically shown in Figure
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3, this becomes imperative for solving problems on hardware
where the thread grid is not large enough to cover the input
array in entirety.

Ty A S5 6 7 8 9 It
o iAo~ 10 11 12 13 14 |5
R

values| 5 ‘ 6 ‘ 7 8 9 10 ‘ 11 ‘ 12 | 13 | 14 ‘

I R A

0 1 2 0 0 0
Iy Ty 15 nw T

stride

Figure 2. Work distribution for SpMV implementation using
CUDA [5]

Nonetheless, issues of load balancing and thread diver-
gence beset this simple and easy-to-understand algorithm for
SpMV [5]. The pattern of memory access which needlessly
processes threads with zeros impinges upon the efficacy of
this method. The performance of our code manifestly suffers
due to this inefficiency and more sophisticated techniques
like CSR-Vector reduction, CSR-Stream and CSR-Adaptive
implementations are needed to observe significant speedups

[5].

3.2.2 Vector dot product. The algorithm, as implemented,
needs to compute the dot product of multiple pairs of vectors
on any given MPI rank. The concomitant computational load
engenders the need to use GPU-enhanced processing of the
dot product. A cursory glance at the problem suggests that
CUDA is aptly suited for this job wherein each thread com-
putes the product of the corresponding components of the
vectors in parallel. However, calculating a vector dot product
entails the reduction from vectors to a scalar.

-

c=a-b (12)
= (ao, a1, az, as) - (bo, by, bz, b3) (13)
= a()b() + a1b1 + azbz + a3b3 (14)

To calculate the sum in the last equation, one could use dif-
ferent approaches. A rather straightforward implementation
involves parallel pairwise multiplication of array elements
followed by serial addition. The so-called “atomic" operations
corral the products of elements computed by each thread and
sum them up to produce a scalar value. This operation is anal-
ogous MPI_Sum and MPI_Reduce. In one of our implementa-
tions, we explored the use of atomicAdd() for this purpose.
A caveat is the necessity of using __() syncthreads to avoid
any inadvertent race conditions. However, this approach, as
discussed later, turns out to be relatively inefficient.
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We use reduction technique, a tree-based approach to
accelerate dot product computation. As shown in Figure
??, this approach uses multiple thread blocks and sums up
partial results sequentially, yielding significant gain in run
time.

Figure 3. Vector dot product: A step of summation reduction
using CUDA [5]

3.3 MPII/O

MPII/O modules are optimally implemented in the algorithm
at three instances - loading all partitioned input data in the
right processor, load the full update vector on to each rank
(after it is partially updated by each rank) and to write the
partial final results from each rank to a common output file.

3.3.1 Reading Partitioned Inputs. The following binary
files are required as inputs to solve the system of equations

1. Mvec - File which stores the sparse matrix as a vector
2. rowp - File storing the auxiliary array pointing to the
index of first non-zero element of each row in Mvec
3. colm - File storing the column index of all non-zero

entries
4. rhs - File storing the full RHS vector (i.e. b in Ax = b)

All the processors will have its own copy of the full RHS
vector. The other 3 vectors are partitioned and read into each
processor to ensure that values corresponding to the set of
rows assigned to a processor are only read.

The routine MPI_File_read_at() is used to ensure that
each process reads the right chunk of data from the input
files and load them in relevant variables.

3.3.2 Loading Update Vector. The algorithm can be real-
ized by using only one full-vector (i.e. a vector that is stored
in its entirety on each rank). The update vector py in our
programme is the only full-vector as it is the only one in-
volved in the matrix-vector product. On each processor, the
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partial vector result of the partial matrix full vector product
is computed as in fig 4

Aonmnk p£NH

Figure 4. Matrix-vector product on multiple ranks

The subsequent operations operations to get the new up-
date vector pg.q are done using the scaled vector addition
and dot product kernels. The new update vector, however is
stored partially on each rank based on the calculations from
that rank.

Write Read
Update
MPI 1/O Vector File MPI I/O
— —
onrank full
k+1 Pi+1

Figure 5. Partial update vector on each rank to full update
vector using MPI I/O

MPI_File_write_at() routine is used to write the partial
update vector on each rank to a common file update_vector.
After all ranks finish writing the update vector to the file,
using MPI_File_read_all() the full update vector is read
into a variable. Therefore, all ranks will have a copy of the
full update vector for the matrix vector multiplication in the
next iteration.

3.3.3 Writing Final Result. The solution to given linear
system i.e. the result vector is also stored in each processor
partially. The results were written to output file(s) in two
ways —

1. To one common result file usingMPI_File_write_at()
ensuring each processor writes the partial result in the
right location

2. To multiple result files (one from each rank) using
MPI_File_write_all()
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4 Performance Analysis

The performance of parallel conjugate gradient solver is
tested on AiMOS supercomputer for different systems with
varying sizes. We tested two versions of the solver, the CPU
only version and hybrid CPU-GPU version. Both strong and
weak scaling analysis are conducted. These test results are
discussed in this section.

4.1 Problem Definition

Numerical analysis of steady 1D heat equation is consid-
ered for the performance analysis of the parallel conjugate
gradient solver. Steady state heat equation in 1D is given as:

—Kog = f(x) (15)

Here, T is the temperature, k is thermal conductivity and f(x)
is the source term. Numerical analysis of Eq. (15) involves
discretizing the domain into small segments and solving the
equation using finite difference technique. This ultimately
leads to solving a system of linear equations. The coefficient
matrix obtained here is a sparse matrix with tri-diagonal
banded structure. Based on number of discretized segments,
systems with varying sizes are obtained for performance
analysis.

4.2 MPI Performance

In this subsection performance analysis of MPI-only version
of the solver is discusses. Strong scaling study is conducted
on 7 different systems of size 1K X 1K, 2.5K X 2.5K, 5K X 5K,
10K X 10K, 20K X 20K, 50K X 50K and 100K x 100K. The
number of MPI ranks is varied from 1-6 and 12.

Plots for run-time analysis of strong scaling study are
displayed in Fig. 6. In Fig. 7, run-time analysis for all the
cases is displayed. It can be observed that for size 1K X 1K,
2.5K.5K and 5K x 5K, there is a nominal speedup by using
2 ranks. But as we increase the ranks from 2 the run-time
is increasing. For the larger systems we can observe the
speedup with increase in number of ranks from 1-6. But for
12 ranks all the systems show different degrees of slowdown.

To get better understanding of these results, we did per-
formance analysis of the solver using an application GProf.
The results for system of size 50K X 50K for 1, 2 and 12
ranks are shown in Table 1, 2, 3 respectively. The operations
which take maximum time are matrix-vector multiplication,
vector-vector addition and vector-vector dot product. As we
increase the ranks from 1-2 and eventually to 12, the speedup
in all three operations can be observed. But all the ranks need
synchronization before moving to the next iteration. If each
rank handles relatively small number of rows, the idle time
will increase because of synchronization. Hence using more
than 2 ranks in only justified for large systems.
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Figure 6. Strong scaling MPI-only solver
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Figure 7. Strong Scaling MPI-only solver: run-time vs. no.
of ranks for all sizes

Table 1. Profiling for 50k system size with 1 rank

% Cumulative | self self .

. Function
time seconds seconds | calls
44.68 | 92.54 92.54 50010 matrix_vector_product_onrank
27.54 | 149.58 57.04 150027 | vector_scaled_addition_onrank
26.80 | 205.08 55.50 150027 | vector_dot_product_onrank

Table 2. Profiling for 50k system size with 2 ranks

% Cumulative | self self

time seconds seconds | calls Function

47.01 | 48.63 48.63 50009 matrix_vector_product_onrank
26.44 | 75.98 27.35 150024 | vector_scaled_addition_onrank
25.76 | 102.63 26.65 150024 | vector_dot_product_onrank

Table 3. Profiling for 50k system size with 12 ranks

% Cumulative | self self .

. Function
time seconds seconds | calls
4251 | 7.36 7.36 50006 matrix_vector_product_onrank
30.63 | 12.67 5.30 150015 | vector_scaled_addition_onrank
25.80 | 17.14 4.47 150015 | vector_dot_product_onrank

The weak scaling study analyzes speedup with number of
processors for fixed problem size per processor. This type
of study is not possible on our solver as it would lead to an
invalid system (number of rows and columns different) of
equation. Here, weak scaling is run-time analysis vs. size
of the problem by keeping number of processors constant.
There results for different number of ranks are displayed in
Fig. 8.

Weak scaling results from Fig. 8 show a greater % increase
in the speedup with increase in number of ranks for larger
systems.

4.3 MPI-CUDA Performance

Similar test cases as Section 4.2 are used to analyze the per-
formance of the hybrid MPI-CUDA version of the solver. The
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Figure 8. Weak scaling MPI-only solver: run-time vs. prob-
lem size for all ranks

results for both versions are also compared in this section.
As explained in the Section 3.2.2, we are employing a CUDA
reduction technique for vector-dot product. We first ana-
lyze the performance gain obtained by using the reduction
technique.

Fig. 9 illustrates that the run-time significantly decreases
after applying CUDA reduction technique for vector-dot
product. All the subsequent MPI-CUDA results presented
are with the reduction technique.

Strong scaling studies for different systems are done on
the hybrid solver. The run-time analysis vs. number of GPUs
for all systems is presented in Fig. 10. Also we compare
theses results with the MPI-only solver’s performance. These
comparison for system size 50K X 50K and 100K X 100K are
shown in Fig. 11.

Fig. 11 clearly illustrates that for small number of ranks,
the MPI-CUDA solver is much faster than MPI-only solver.
But the MPI-CUDA solver doesn’t exhibit any scaling. On
the contrary run-time increases with number of GPUs. We
conducted performance analysis on a 20K X 20K using appli-
cation NVProf. The performance analysis results for GPUs
1,2 and 6 are presented in Tables 4, 5 and 6 respectively.
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Figure 10. Strong scaling MPI-CUDA solver: runt-time vs.
no. of GPUs for all sizes

Table 4. Profiling for 20k system size with 1 GPU

Rank % self self Kernel
time seconds | calls
62.34 | 1.93 60003 | dot_product
0 28.66 | 0.89 60003 | vector_addition
9.00 0.28 20002 | matrix_vector_multiplication
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Figure 11. Strong scaling: MPI-CUDA vs. MPI only compar-
ison

Table 5. Profiling for 20k system size with 2 GPU

Rank % self self Kernel

time seconds | calls

63.43 | 3.71 20002 | matrix_vector_multiplication
0 27.69 | 1.62 60003 | dot_product

8.88 0.52 60003 | vector_addition

61.25 | 3.71 20002 | matrix_vector_multiplication
1 27.73 | 1.68 60003 | dot_product

11.02 | 0.67 60003 | vector_addition

Table 6. Profiling for 20k system size with 6 GPU

Rank % self self Kernel

time seconds | calls

72.84 | 5.01 20002 | matrix_vector_multiplication
0 21.15 | 1.45 60003 | dot_product

6.01 0.41 60003 | vector_addition

67.13 | 3.76 20002 | matrix_vector_multiplication
2 26.05 | 1.46 60003 | dot_product

6.82 0.38 60003 | vector_addition

51.70 | 2.28 20002 | matrix_vector_multiplication
5 35.93 | 1.58 60003 | dot_product

12.37 | 0.54 60003 | vector_addition

For the serial execution (Table 4) of MPI-CUDA solver,
matrix-vector multiplication only takes 9% of the run-time.
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But for more than 1 GPU it is the most expensive opera-
tion. This indicates that computing resources are wasted
on the synchronization causing parallel operations be more
expensive. Further is needed to understand the cause for bad
scaling performance of the hybrid solver.

We also performed weak scaling analysis keeping number
of GPUs constant while changing the problem size. These
analysis for different ranks is illustrated in Fig. 12. The com-
parison of weak scaling between MPI-CUDA solver and MPI-
only solver for ranks 1, 2, 4 and 6 is presented in the Fig.
13.

700 Runtime vs Problem size

wol | ——#GPUs=1 |
-o- #GPUs=2 /
so0l | —o- #GPUs=3 /]
I D
3 -o- #GPUs=4 iy
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Figure 12. Weak Scaling MPI-CUDA solver: run-time vs.
problem size for all ranks

It can be observed in Fig. 13 that for small number of ranks
MPI-CUDA solver is much faster than MPI-only solver. But
as we increase number of rank MPI-only solver is faster due
to inefficient scaling of MPI-CUDA solver.

We have separately tested MPI-only solver and MPI-CUDA
solver on different problems. In summary, the MPI solver
shows good scaling for larger problems only. For smaller
systems, run-time is increasing with processors due to time
consumed in synchronization. Overall, MPI-CUDA solver
performs better than MPI-only solver for small number of
ranks. But it doesn’t exhibit any scaling with more processors
which needs further investigation.

5 Summary

In the scope of this project we have developed a parallel
solver for solving large systems of linear equation. The solver
is based on conjugate gradient algorithm. A compresses row
storage data-structure is used to store large sparse matrices
efficiently.

Two versions of the parallel solver are developed, a CPU
only version using MPI and a hybrid CPU-GPU version using
CUDA. Matrix vector multiplication and vector-vector dot
product are the most critical operations in conjugate gradient
algorithm. These operations can be performed in parallel by
distributing the coefficient matrix row wise across different

Sushant Kumar, Narendra Nanal, and Vignesh Vittal-Srinivasaragavan
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Performance Benchmark of A Parallel Sparse Linear System Solver Using Conjugate Gradient

processors. Operations like MPI broadcast are used to com-
municate the results between different processors. We also
use MPI I/O to read partitioned input files and distribute the
data across processors. The ability to write different block of
solutions form different processors to a single file or multiple
files is also demonstrated.

The performances of both MPI-only solver and MPI-CUDA
solver are tested with systems of sizes 1K X 1K, 2.5K X 2.5K,
5K X 5K, 10K X 10K, 20K X 20K, 50K X 50K and 100K X 100K.
The number of processors is varied from 1-6 and 12. The
MPI-only solver shows speedup with increase in number of
processors for large systems only(size > 5K). The MPI-CUDA
solver shows speedup associated with use of GPUs. But it
doesn’t show scaling as we increase number of processors.

Performance analysis applications like NVProf and Gprof
are used to get insights about the behaviour of solvers. We
found that with parallelization, all the operations are faster
but significant amount of time is consumed by synchroniza-
tion and communication between processors. This cost is
only justified for larger systems.The performance of MPI-
CUDA solver can be improved by employing efficient reduc-
tion technique. Additionally, more sophisticated techniques
like CSR-Vector reduction, CSR-Stream and CSR-Adaptive
for SpMV could boost the performance of the algorithm. In
our implementation, we didn’t use preconditioning which
could significantly impact the efficacy of the method. It needs
more investigation to find reasons for its poor scaling be-
haviour. Nonetheless, we are able to demonstrate the effec-
tiveness of a parallel conjugate gradient solver to solve large
systems of linear equations.
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