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Abstract
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cients; Wavelet-Galerkin; Bounded Wavelet-Galerkin; Coupled ODEs.

Wavelet analysis has attracted much attention in the field of signal processing.
It has had successful applications in image analysis, transient signal analysis and
other signal processing applications. However, wavelet analysis is not limited to sig-
nal analysis and processing. Wavelet theory has become an active area of research
and opportunities of further development of both mathematical understanding of
wavelets and its wide applications in science and engineering are being explored.
In this thesis, we exploit the properties of wavelets to numerically analyze engi-
neering systems.

The thesis is aimed to act as a comprehensive guide to the world of wavelets and
its applications in solving differential equations. Haar wavelet based methods to
approximate functions, find numerical integrals of functions and solve ODE/PDEs
are detailed upon in the thesis. The simplicity of the wavelet has made the algo-
rithm to solve ODE/PDEs much faster and efficient. The test cases to verify the al-
gorithm were taken from standard engineering problems and compared with their
respective analytical solution.

Daubechies wavelets, which are continuous and differentiable unlike Haar, were
then studied for its applications in Wavelet-Galerkin algorithms. 2-term proper and
improper connection coefficients, which were integral to Wavelet-Galerkin method,
were derived by exploiting the properties of wavelets. Various ODE/PDEs were
solved using the said method and were compared with the respective analytical so-
lutions. Advantages of using Wavelet-Galerkin algorithm over conventional meth-
ods for solving coupled ODEs was investigated towards the end of this thesis.
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Chapter 1

Introduction

The field of Computational mechanics is concerned with the use of computational
methods/tools to study and analyze a mechanical system. In general a mathemati-
cal model of the physical phenomenon is made in terms of partial differential equa-
tions. The need to have an efficient algorithm to solve for theses partial differential
equations (PDEs) or original differential equations (ODEs) with a given bound-
ary/initial conditions is on the rise. Nowadays, the search for novel algorithms to
solve PDEs have gained a lot of traction. Some of frequently used the algorithms
are Finite Element method, Finite Difference method, Finite volume and Boundary
Element Method. Wavelet methods is one such novel method that has generated
much interest in the field of computational mechanics.

Wavelets are an orthonormal basis for functions in L2(IR) which have compact
support, have continuity properties that can easily be increased, have a complete
basis that can easily be generated by simple recurrence relation, have very good
convergence properties in the context of projection methods and their space is bro-
ken down into a family of subspaces which enable multi-resolution analysis. Like
Fourier analysis, wavelet analysis involves expansions of functions in terms of said
wavelets (in forms of their translations and dilations) basis instead of trigonometric
functions. Thus, they are localized space, permitting a closer connection between
functions being represented in this basis. Their ability to reproduce polynomials
exactly is also a huge advantage.

The objective of wavelets analysis is to define these powerful wavelet basis and
find computationally efficient methods to analyze engineering systems using this
basis. The main aim of this thesis is to investigate the efficiency of using wavelet-
based algorithms to solve linear-elasticity problems. The thesis is also aimed to
serve as comprehensive guide to wavelet-based algorithms.
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1.1 Literature survey

The book by Albert Boggess and Francis J Narcowich titled “A first course in wavelets
with Fourier analysis” [1] proved to be a great gateway to world of wavelets. The
book by Ulo Lepik titled “Haar Wavelet with Applications” [2], the ideal book into
the area of Haar wavelets was referred to get acquainted with the wavelet. Haar
wavelets with its discontinuity and therefore lack of differentiability was not the
ideal basis to solve PDEs. Chen et al [3] proposed a work around to tackle this
which involves expanding the highest derivative in the differential equation into
Haar series. Therefore, the subsequent derivatives and thus the original solution
is obtained by integrating the original basis. The whole system is discretized by col-
location method. Works of Lepik [4],[5] were referred to implement the algorithms
for ODEs and PDEs.

In “Ten lectures on wavelets” by Ingrid Daubechies [6], the renowned mathe-
matician introduced the family of orthonormal wavelets to the world – Daubechies
wavelets. The continuity and differentiability of the wavelets made it an excellent
choice for basis to solve differential equations.

“Fictitious boundary approach” by Lu et al [8] was the first Wavelet-Galerkin
method to be implemented in this thesis. In order to implement the method, cer-
tain integral terms called the ‘Improper-Connection coefficients’ was to be calcu-
lated. The algorithm to evaluate the parameter was detailed in Latto et al [9] (and
referred from [7]). The drawbacks of fictitious boundary approach was addressed
in the next method – “Bounded Wavelet-Galerkin method” by Shih et al [10]. The
research paper also provides a detailed account on how to calculate the parame-
ters (like proper 2-term connection coefficients, multiple integrals, proper moment
terms etc) involved in the method.
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Chapter 2

Haar Wavelets – Introduction

Haar wavelets are based on the functions which were introduced by Hungarian
mathematician Alfred Haar in 1910. Haar used these functions to explain an or-
thonormal system for the space of square-integrable functions on the unit interval
[0, 1]. The study of wavelets, and even the term “wavelet”, did not come until much
later. The Haar sequence is now recognized as the first known wavelet basis. The
wavelets’ ability to be integrated analytically any number of times is one of the
prime reason for it to be considered for solving differential equations.

All the conventions for the construction of Haar wavelets and solving differential
equations are directly inspired from [2]. To make this thesis self-contained we will
describe the conventions and construction of the wavelet in this section.

Consider an interval x ∈ [A,B] in which the wavelet is to be defined. Let us
introduce the term J which is the maximum level of resolution and partition the
interval into 2M subintervals of equal length where M = 2J . The length of each
sub-interval is ∆x = B−A

2M . Introducing two more parameters – firstly, The dilata-
tion parameter j = 0, 1, ...,J and secondly, the translation parameter k = 0, 1, ...,
m− 1 (where m = 2j). The wavelet number i is identified as i = m + k + 1. The ith
haar wavelet is defined as

hi(x) =


1, if x ∈ [ζ1(i), ζ2(i)]
-1, if x ∈ [ζ2(i), ζ3(i)]
0, elsewhere

(2.1)

where,

ζ1(i) = A + 2kµ∆x ζ2(i) = A + (2k + 1)µ∆

ζ3(i) = A + 2(k + 1)µ∆ µ = M
m
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The h1(x) is the scaling function, where h1(x) = 1 when x ∈ [A,B] and 0 else-
where (similar to a pulse). The h2(x) corresponds to the wavelet function also
known as mother wavelet. The figures of haar function for values i from 1 to 8
for A = 0 and B = 1 are given below.

Figure 2.1: Haar wavelet functions from i = 1 to 8

The support (width) of the ith wavelet is given by

ζ3(i)− ζ1(i) = 2µ∆x =
B− A

m =
B− A

2j (2.2)

Increasing j narrows down the support, therefore j is called the dilatation parame-
ter. The translation parameter k localizes the position of the wavelet in the x-axis;
As k changes from 0 to m − 1 the initial point of the ith wavelet ζ1(i) moves from
x = A to x = [A + (m− 1)B]/m.

In the following section we will derive certain integral terms required to solve
an nth order PDE.
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pα,i(x) =

∫ x

A

∫ x

A
....
∫ x

A
hi(t).dtα =

1

(α− 1)!

∫ x

A
(x− 1)α−1hi(t).dt (2.3)

α = 1, 2, ..n and i = 1, 2, ..2M

These integrals can be calculated analytically.

pα,i(x) =



0 for x < ζ1(i),

[x−ζ1(i)]α
α! , for x ∈ [ζ1(i), ζ2(i)]

[x−ζ1(i)]α−2[x−ζ2(i)]α
α! , for x ∈ [ζ2(i), ζ3(i)]

[x−ζ1(i)]α−2[x−ζ2(i)]α+[x−ζ3(i)]α
α! , elsewhere

(2.4)

These formulae holds for i > 1. For i = 1, ζ1 = A and ζ2 = ζ3 = B

pα,i(x) =
1

α!
[x− A]α (2.5)

For Boundary value problems the values of pα,i(B) are required and can be calcu-
lated from equation (2.4),(2.5).

2.1 Haar matrices

In order to use Haar wavelets for the numerical solutions ‘collocation method’ is
applied (discrete form). The grid points are denoted by

x̃l = A + l∆x l = 0, 1, 2, ..2M (2.6)

The collocation points i.e. the discretized points are taken to be

xl = ( ˜xl−1 + x̃l)/2 l = 1, 1, 2, ..2M (2.7)
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The equations (2.1) to (2.5) are discretized using the collocation points and ex-
pressed in matrix forms. The Haar matrix and the integral matrices (H,P1,P2, ...Pα)
are of the order of 2Mx2M. The elements of these matrices are given by

H(i, l) = hi(xl)
Pα(i, l) = pα,i(xl)

Consider the case A = 0 B = 1 J = 1 (2M = 4). These grid points (xl) are
x̃0 = 0, x̃1 = 0.25, x̃2 = 0.5, x̃3 = 0.75, x̃4 = 1 and the collocation points are x1 =
0.125, x2 = 0.375, x3 = 0.625, x4 = 0.875. The corresponding Haar and integral ma-
trices H,P1,P2 are

H =


1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

 P1 =
1

8


1 3 5 5
1 3 3 1
1 1 0 0
0 0 1 1

 P2 =
1

128


1 9 25 49
1 9 23 31
1 7 8 8
0 0 1 7



2.2 Haar expansion of a function

Every square integrable function f = f (x) for x ∈ [A,B] can be expanded into haar
wavelet series as

f (x) =
2M∑
i=1

aihi(x) (2.8)

Here ais are wavelet coefficient. The discrete form of (2.8) using the collocation
points is

f̂ (xl) =
2M∑
i=1

aihi(xl) (2.9)

The corresponding matrix form is

f = aH (2.10)
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where H is the Haar matrix , a = [a1,a2, ..,a2M ] and f = [f (x1), f (x2)..., f (x2M)].
Solving for the a the coefficient row-vector.

a = fH−1 (2.11)

Replacing a into the equation (2.8) the wavelet approximation of the function is
obtained for any resolution J.

2.2.1 Numerical Examples

Plot the Haar approximation of the function f (x) = x(1− x) for x ∈ [0, 1]

Figure 2.2: Haar approximation and wavelet coefficients for J=3

2.3 Numerical Integration based on Haar wavelets

Consider the integral of f (x) over the interval [a,b]. The function can be approxi-
mated using haar wavelets as (2.9) and it rapidly converges to actual function as
M increases.

∫ b

a
f (x).dx =

2M∑
i=1

ai

∫ b

a
hi(x).dx = a1(b− a) (2.12)
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To calculate the Haar coefficients ais we consider the nodal points xk given by

xk = a + (b− a)
k + 0.5

2M (2.13)

The solution of equation (2.12) is given by

a1 =
1

2M

2M∑
k=1

f (xk) (2.14)

Using the quadrature method with Haar wavelets the following formula for numer-
ical integration is obtained

∫ b

a
f (x).dx =

b− a
2M

2M∑
k=1

f (xk) =
b− a
2M

2M∑
k=1

f
(

a + (b− a)
k + 0.5

2M

)
(2.15)

This method can be extended to double as well as triple integrals.

2.3.1 Numerical Examples

Consider the following definite integrals. The integral solution is shown in the
plots given below and the relative error is shown in the tables below.

Example 1

∫ 1

0
cos(x)esin(x)dx

Resolution Error
J=8 2.7397e-07
J=9 6.8491e-08
J=10 1.7123e-08
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Figure 2.3: Integration of the function f (x) = cos(x)esin(x). It can be clearly seen
that the value of the integral converges to exact value

Example 2

∫ 1

0
xtan−1(x2)dx

Figure 2.4: Integration of the function f (x) = xtan−1(x2). It can be clearly seen
that the value of the integral converges to exact value

Resolution Error
J=8 1.2934e-06
J=9 3.2334e-07
J=10 8.0836e-08
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Chapter 3

Solving Differential
Equations using Haar
wavelets

In this following chapter we will detail upon how to solve ODEs and PDEs using
Haar wavelets. First a general formulation of the procedure is given, which will be
immediately followed by some engineering examples.

3.1 Solving ODEs using Haar wavelets

Haar wavelet being a discontinuous function and therefore lack of differentiability
within its compact support [0, 1] renders it inefficient to solve ODEs. To tackle this,
Chen et al [3] proposed to expand the highest derivative in the differential equation
into Haar series. Consider the nth order differential equation

n∑
ν=1

Aν(x)y(ν)(x) = f (x), x ∈ [α, β] (3.1)

with the boundary conditions

yν(α) = yν0 , yν(β) = yνL, ν = 0, 1, 2...n− 1 (3.2)

15



Here Aν(x) and f (x) are prescribed functions and yν0 , yνL are constants. The Haar
wavelet solutions is sought in the form

y(n)(x) =
2M∑
i=1

aihi(x) (3.3)

By integrating equation (3.3) n− ν times we get

y(ν)(x) =
2M∑
i=1

aipn−ν,i(x) + Zν(x) (3.4)

where

Zν(x) =
n−ν−1∑
σ=0

1

σ!
(x− A)σyν+σ

0 (3.5)

To obtain a system of equations, replace y(ν) in equation (3.1) and evaluate the
equation at the collocation points xl. Subsequently the approximate solution can
be obtained by solving the set of equations (preferably in the matrix forms for ease
of solving). Ultimately, the coefficient vector a is solved and thereby obtaining the
haar solution.

3.1.1 Axial Deformation of a Rod

Consider a uniform rod subjected to an axial load as illustrated in fig 3.1

16



Figure 3.1: Beam under axial loading

The bar is governed by the differential equations

AEd2u
dx2

+ q0(x) = 0 (3.6)

with the boundary conditions

u(0) = α

AEu(1)(L) = β
(3.7)

Now to find approximate solution to this problem using Haar wavelets as basis, we
assume the solution to be of following form

u(2)(x) =
2M∑
i=1

aihi(x) (3.8)

Integrating the above equation w.r.t x from 0 to x

u(1)(x)− u(1)(0) =

∫ x

0

2M∑
i=1

aihi(x) =
2M∑
i=1

aip1,i(x) (3.9)

On integrating a second time

17



u(x)− u(0)− u(1)(0)x =

∫ x

0

2M∑
i=1

aip1,i(x) =
2M∑
i=1

aip2,i(x) (3.10)

Substituting (3.7) in (3.10)

u(x) = α + u(1)(0)x +
2M∑
i=1

aip2,i(x) (3.11)

Substituting x = L in (3.9) and using (3.7)

u(1)(0) =
β

AE −
2M∑
i=1

aip1,i(L) (3.12)

Substituting (3.12) in (3.11)

u(x) = α +

 β

AE −
2M∑
i=1

aip1,i(L)

 x +
2M∑
i=1

aip2,i(x) (3.13)

Evaluating the equations at collocation points

u(xj) = α +

 β

AE −
2M∑
i=1

aip1,i(L)

 xj +
2M∑
i=1

aip2,i(xj) j = 1→ 2M (3.14)

In order to get the coefficients ais we need to solve

AE
2M∑
i=1

aihi(xj) + q0(xj) = 0 (3.15)

j = 1, 2, 3, ...2M

Substituting the obtained coefficients into equation (3.14) the displacement func-
tions is obtained. Here the solution to the displacement function depends mainly
on the type of loading i.e. the function q0(x) and the boundary conditions

18



Example

Consider the case where the axial load function is given by q0(x) = sin(x) The exact
solution for this case is

u(x) = α +
1

AE [(β − cos(L))x + sin(x)]

Figure 3.2: Axial deformation of the rod subjected to q0(x) = 1000sin(x) ,α = 0 and
β = 0

For estimating the accuracy of the wavelet results, the matrix norm ∆(η) = norm(u−
uex, η) is used . The accuracy of wavelet solution can be estimated by the second
degree norm (δ = ∆(2)/2M). To get a clear picture about the error estimate u and
uex are taken in mm i.e the error is multiplied by 1000 and the norm is calculated.

Resolution δ
J=2 9.1203e-06
J=3 1.6149e-06
J=4 2.8560e-07
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3.1.2 Deflection of a loaded beam

Consider a beam which is simply supported on one end and cantilever on the other
with an arbitrary load distribution be q0(x) as shown in the figure below

Figure 3.3: Simply supported cantilever beam with arbitrary loading

The governing equations and the boundary conditions are given by

EI d4v
dx4
− q0(x) = 0 (3.16)

v(0) = 0 v(1)(0) = 0 (3.17)

v(L) = 0 v(2)(L) = 0 (3.18)

As earlier, the solution is sought to be of the following form

v(4)(x) =
2M∑
i=1

aihi(x) (3.19)

Integrating the above equation multiple times we get the following

v(3)(x) = v(3)(0) +
2M∑
i=1

aip1,i(x) (3.20)
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v(2)(x) = v(2)(0) + v(3)(0)x +
2M∑
i=1

aip2,i(x) (3.21)

v(1)(x) = v(1)(0) + v(2)(0)x + v(3)(0)
x2

2
+

2M∑
i=1

aip3,i(x) (3.22)

v(x) = v(0) + v(1)(0)x + v(2)(0)
x2

2
+ v(3)(0)

x3

6
+

2M∑
i=1

aip4,i(x) (3.23)

Substituting x = L in equations (3.21) and (3.23) thereby solving the obtained equa-
tions for v(2)(0) and v(3)(0)

v(2)(0) =
−3

L2

2M∑
i=1

ai

[
p4,i(L)− L2

6
p2,i(L)

]
(3.24)

v(3)(0) =
3

L3

2M∑
i=1

ai

[
p4,i(L)− L2

2
p2,i(L)

]
(3.25)

Substitute these two equations onto (3.23) to get the final form of v(x) The coeffi-
cients ais can be evaluated from

EI
2M∑
i=1

aihi(x) = q0(x) (3.26)

Substituting the obtained coefficients into equation (3.23) the displacement(deflection)
functions is obtained.

Example

For the case of uniform loading as in q0(x) = 1000EI. The exact solution is given by
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v(x) =
500

12
x4 − 625L

6
x3 +

125L2

2
x2 (3.27)

Figure 3.4: Deflection of the simply supported cantilever with q0(x) = 1000EI

It is clear from the figure 3.4 that the solution is converging. The accuracy of the
solution based on the second degree norm of the error for various resolutions are

Resolution δ
J=2 1.3911e-15
J=3 1.1554e-15
J=4 6.8653e-16

3.2 Solving Partial Differential Equations using Haar
wavelets

Consider the general linear PDE of the form

Γ∑
γ

Λ∑
λ

Dγλ
∂(γ+λ)u
∂xγ∂yλ

= f (x, y) (3.28)
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Where Γ and Λ are positive integer constants and Dγλ and f (x, y) are prescribed
functions. There is added condition that the solution u(x, y) should satisfy the
boundary conditions. Let’s discretize the domain of x ∈ [A1,B1] and y ∈ [A2,B2]
into 2M1 and 2M2 parts of equal lengths respectively. Generally, M1 = M2 is pre-
ferred as it results in a square system instead of a rectangular system. The solution
is assumed to be of the following form:

∂(Γ+Λ)u
∂xΓ∂yΛ

=

2M1∑
i=1

2M2∑
l=1

ailhi(x)hl(y) (3.29)

Where ails are the wavelet coefficients and hi(x) and hl(y) are wavelet functions.
The lower derivatives of u(x, y) are found by integrating the above equation multiple
times. The unknown constants that are encountered in the equations are evaluated
with boundary conditions as usual. By enforcing the equation (3.29) to satisfy at
collocation points (xr, ys), where r ∈ [1, 2M1], s ∈ [1, 2M2], the following set of linear
equations are obtained.

2M1∑
i=1

2M2∑
l=1

ailRilrs = f (xr, ys) (3.30)

The wavelet coefficients are solved with the above set of linear equations. To con-
vert the fourth order matrices to second order matrices the following indices are
introduced

α = 2M1(i− 1) + l β = 2M2(r − 1) + s (3.31)

Denoting ail → b(α), f (xr, ys) → F(β) and Rilrs → S(α, β) we can rewrite equation
(3.30) as:

2M1∑
i=1

2M2∑
l=1

b(α)S(α, β) = S(α, β) (3.32)

Here b and F are 2M1*2M2 sized row-vectors and S is (2M1)2x(2M2)2 dimensional
matrix. In matrix form it is
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bS = F (3.33)

Once b is evaluated it is very simple to restore ail. By integrating (3.29) Γ times
w.r.t x and Λ times w.r.t y, we obtain

u(x, y) =

2M1∑
i=1

2M2∑
l=1

ailpΛ(y)pΓ(x) + Ψ(x, y) (3.34)

In above equation pΓ(x) and pΛ(y) are integrals of Haar function. Ψ(x, y) includes
all the constants that occur in the course of integration.

3.2.1 Diffusion Equation

Consider the one dimensional Diffusion Equation

∂u
∂t = A∂

2u
∂x2

, (x, t) ∈ [0, 1] (3.35)

with the initial and boundary conditions

u(x, 0) = g(x); u(0, t) = f0(t) u(1, t) = f1(t) (3.36)

Wavelet solution is considered with the following assumption M1 = M2 = M

∂3u
∂x2∂t =

2M∑
i=1

2M∑
l=1

ailhi(x)hl(t) (3.37)

Integrating the above equation multiple times with a suitable variable accordingly
yields

∂2u
∂x2

=
2M∑
i=1

2M∑
l=1

ailhi(x)p1l(t) +
∂2g
∂x2

(3.38)

24



∂u
∂t =

2M∑
i=1

2M∑
l=1

ailp2i(x)hl(t) + x ∂
2u

∂x∂t

∣∣∣∣
x=0

+
∂u
∂t

∣∣∣∣
x=0

(3.39)

Substituting x=1 in the above equation we get

∂u
∂t

∣∣∣∣
x=1

=
2M∑
i=1

2M∑
l=1

ailp2i(1)hl(t) +
∂2u
∂x∂t

∣∣∣∣
x=0

+
∂u
∂t

∣∣∣∣
x=0

(3.40)

Using the boundary conditions (3.36)

∂2u
∂x∂t

∣∣∣∣
x=0

=
∂f1
∂t −

∂f0
∂t −

2M∑
i=1

2M∑
l=1

ailp2i(1)hl(t) (3.41)

Substituting in equation (3.40)

∂u
∂t =

2M∑
i=1

2M∑
l=1

ail[p2i(x)− xp2i(1)]hl(t) + x∂f1
∂t + (1− x)

∂f0
∂t (3.42)

Substituting equation (3.38) and (3.42) onto (3.35) and rearranging the terms we
get

2M∑
i=1

2M∑
l=1

ail{[p2i(x)− xp2i(1)]hl(t)− Ahi(x)p1l(t)} = A∂
2g
∂x2
− x∂f1

∂t − (1− x)
∂f0
∂t (3.43)

Satisfying the above equation in collocation points (xr, ys) we get a system of equa-
tion upon solving which we get the coefficients ails. Substitute the coefficients into
the following equation to get the solution.

u(x, t) =
2M∑
i=1

2M∑
l=1

{ail[p2i(x)−xp2i(1)]p1l(t)}+x[f1(t)− f1(0)]+(1−x)[f0(t)− f0(0)]+g(x)

(3.44)
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Example 1

Consider the case where A = 0.5, g(x) = sin(πx), f0(t) = t/2 and f1(t) = t/2. For
J = 4 the solution is shown below.

Figure 3.5: Solution of the diffusion equation for J = 5

The accuracy of the haar solution is computed using the second degree norm as
usual

Resolution δ
J=3 1.3920e-02
J=4 9.8549e-04
J=5 2.8771e-05

3.2.2 Poissons Equation

Consider the 2-D poissons Equation

∂2u
∂x2

+
∂2u
∂y2

= f (x, y), (x, t) ∈ [0, 1] (3.45)

with the boundary conditions

u(x, 0) = q0(x),u(x, 1) = q1(x); u(0, y) = g0(y),u(1, y) = g1(y) (3.46)

As usual we start the solution process with the assumption M1 = M2 = M
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∂4u
∂x2∂y2

=
2M∑
i=1

2M∑
l=1

ailhi(x)hl(y) (3.47)

Integrating with suitable variable multiple times we get

∂2u
∂x2

=
2M∑
i=1

2M∑
l=1

ailhi(x)p2l(y) + yφ1′′(x) + φ2′′(x) (3.48)

∂2u
∂y2

=
2M∑
i=1

2M∑
l=1

ailp2i(x)hl(y) + xψ1′′(y) + ψ2′′(y) (3.49)

Integrating these again we get finally,

u(x, y) =
2M∑
i=1

2M∑
l=1

ailp2i(x)p2l(y) + xψ1(y) + ψ2(y) + yφ1(x) + φ2(x) (3.50)

To obtain the functions φ1, φ2, ψ1 and ψ2 we use the boundary conditions. After
some minor rearrangements and substitutions we get

φ1(x) = q1(x)−q0(x)−x[ψ1(0)−ψ1(1)]−[ψ2(0)−ψ2(1)]−
2M∑
i=1

2M∑
l=1

ailp2i(x)p2l(1) (3.51)

φ2(x) = q0(x)− xψ1(0)− ψ2(0) (3.52)

ψ1(y) = g1(x)−g0(x)−y[φ1(0)−φ1(1)]− [φ2(0)−φ2(1)]−
2M∑
i=1

2M∑
l=1

ailp2i(1)p2l(y) (3.53)

ψ2(y) = g0(y)− yφ1(0)− φ2(0) (3.54)
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Now equation (3.45) obtains the form

2M∑
i=1

2M∑
l=1

ail{hi(x)[p2l(y)− yp2l(1)] + hl(y)[p2i(x)− xp2i(1)]} =

f (x, y)− y[q1′′(x)− q0′′(x)]− x[g1′′(x)− g0′′(x)]− q0′′(x)− g0′′(y)

(3.55)

Example 1

Solving the equation for g0(y) = g1(y) = 0, q0(x) = q1(x) = 0 and

f (x, y) = 2(x2 + y2 − x− y)cos(xy)− (x− 1)(y− 1)(x2 + y2)sin(xy)

The exact solution to the equation is

u(x, y) = sin(xy)(x− 1)(y− 1)

Figure 3.6: Haar and exact solutions

The accuracy of the haar solution is computed using the second degree norm as
usual

Resolution δ
J=3 2.9828e-06
J=4 7.4980e-07
J=5 1.8771e-07

28



Chapter 4

Daubechies Wavelets –
Introduction

Daubechies Wavelets are based on functions introduced by Belgian physicist/math-
ematician Ingrid Daubechies in 1988. The functions formed a family of orthonor-
mal bases of compactly supported wavelets for the space of square-integrable func-
tions L2(IR). Due to the fact that they possess several useful properties, such as
orthogonality, compact support, exact representation of polynomials to a certain de-
gree, and ability to represent functions at different levels of resolution, Daubechies
wavelets have gained great interest in the numerical solutions of ordinary and par-
tial differential equations.

Daubechies wavelets are an orthonormal basis for functions in L2(IR) which have
compact support or exponentially decaying support, have continuity properties that
can easily be increased, have a complete basis that can easily be generated by sim-
ple recurrence relation, have very good convergence properties in the context of
projection methods and their space is broken down into a family of subspaces which
enable multi-resolution analysis.

The family of compactly supported orthonormal wavelets includes members from
highly localized to highly smooth functions. Each wavelet member is governed by a
set of D (an even integer) coefficients {pk : k = 0, 1, ...,D− 1} through the two-scale
relation

φ(x) =
D−1∑
j=0

pjφ(2x− j) (4.1)

and the equation
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ψ(x) =
1∑

j=2−D
(−1)jp1−jφ(2x− j) (4.2)

where φ(x) and ψ(x) are called scaling function and mother wavelet, respectively.
The fundamental support of the scaling function φ(x) is in the interval [0,D − 1]
while that of the corresponding wavelet ψ(x) is in the interval [1−D/2,D/2].

The coefficients pk in the two-scale relation (4.1),(4.2) are called the wavelet filter
coefficients. Daubechies established these wavelet filter coefficients to satisfy the
following conditions:

D−1∑
j=0

pj = 2 (4.3)

D−1∑
j=0

pjpj−m = δ0,m (4.4)

1∑
j=2−D

(−1)jp1−jpj−2m = 0 for integer m (4.5)

D−1∑
j=0

(−1)jjmpj = 0 m = 0, 1, 2, ..,D/2− 1 (4.6)

where δ0,m is the kronecker-delta function. The correspondingly constructed wavelets
have the following properties

∫ ∞
−∞

φ(x)dx = 0 (4.7)∫ ∞
−∞

φ(x− j)φ(x−m)dx = δj,m (4.8)∫ ∞
−∞

φ(x)ψ(x−m)dx = 0 for integer m (4.9)∫ ∞
−∞

xkψ(x)dx = 0 k = 0, 1, 2, ..,D/2− 1 (4.10)

It is noted that (4.10) is equivalent to that the elements of {1, x, x2, ...xD/2−1} are
linear combinations of φ(x− k), integer translates of φ(x). The exact expression for
such linear combination is given by

30



∞∑
−∞

lnφ(x− l) = xn +
n∑

j=1

(−1)j
(

n
j
)

Mφ
j xn−j, n = 0, 1, ...,D/2− 1 (4.11)

In the above relation, Mφ
j denotes the jth moment of φ(x), which can be computed

by the recursive relation

Mφ
k =

∫ ∞
−∞

xkφ(x)dx

=
1

2k+1 − 2

D−1∑
j=0

k∑
l=0

(
k
l
)

piilMφ
k−l (4.12)

with the initial condition Mφ
0 = 1.

Denote by L2(IR) the space of square integrable functions on real-line. Let Vj
and Wj be subspaces generated, respectively, as the L2 closure of the linear spans
of φj,k(x) = 2j/2φ(2jx− k) and ψj,k(x) = 2j/2ψ(2jx− k), k ∈ Z. Then (4.9) implies that

Vj+1 = Vj ⊕Wj (4.13)

The above relation further implies

V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ Vj+1 (4.14)

and

Vj+1 = V0 ⊕W0 ⊕W1 ⊕ ...⊕Wj (4.15)

where ⊕ denotes ‘orthogonal direct sum’. We have the following orthogonal prop-
erties for Daubechies wavelets
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∫ ∞
−∞

φj,k(x)φj,l(x)dx = δk,l (4.16)∫ ∞
−∞

ψj,k(x)ψl,mdx = δj,lδk,m (4.17)∫ ∞
−∞

φj,k(x)ψj,m(x)dx = 0 (4.18)

where φj,k(x) = 2j/2φ(2jx− k). It is noted that there are no explicit expressions for
calculating the values of the scaling function φ(x) and the corresponding mother
wavelet ψ(x) at an arbitrary point of x . However, the function values of φ(x) and
ψ(x) at the dyadic points k/2j for integers j and k can be recursively computed from
the two-scale relations (4.1) and (4.2) provided that φ(1), φ(2), ..., φ(D−2) have been
obtained. This algorithm, commonly known as ‘Cascade Algorithm’ is discussed in
the next section.

4.1 Cascade Algorithm: Numerical evaluation of
φ(n)(x)

Denote by φ(n)(x), the nth derivative of the scaling function φ(x)

φ(n)(x) =
dnφ(x)

dxn =
d
dxφ

(n−1)(x), φ(0)(x) = φ(x) (4.19)

It follows from (4.11) that φ(n)(x) exists for n = 1, 2, ...,D/2 − 1. Hence applying
two-scale relations (4.1) to the above equation we get

φ(n)(x) = 2n
D−1∑
k=0

pkφ
(n)(2x− k) (4.20)

This relation can be used to find the values of φ(n)(x) at dyadic points x = k/2j,
provided the values of φ(n)(k) k ∈ Z are known. To obtain the values at integer
points, substitute x = 0, 1, 2, ..D − 2 in (4.20) to obtain the homogeneous linear
system of equations
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2−nΦ(0) = P1Φ(0) (4.21)

where Φ(x) = [φ(n)(x)φ(n)(x + 1) .. φ(n)(x + D− 2)]T and P1 is (D-1)x(D-1) matrix

P1 = [p2j−k]1≤j,k≤D−1 j,k are row and column index (4.22)

It is evident from (4.21) that Φ(0) is the eigen vector of matrix P1 corresponding to
eigen value 2−n. The normalizing condition for the vector being

D−2∑
k=0

(−k)nφ(n)(k) = n! (4.23)

which is obtained by differentiating (4.11) n times and letting x = k. Once Φ(1) is ob-
tained we can establish a similar relation for Φ(1/2) by substituting x = 1/2, 3/2, .. ,D−
3/2 in equation (4.20). We get an equation similar to (4.20),

2−nΦ(1/2) = P2Φ(1)

P2 = [p2j−1−k]1≤j,k≤D−1 j,k are row and column index

Generalizing the relation at dyadic points x = k/2j,

φ(n)
(

k
2j

)
= 2n

D−1∑
l=0

plφ
(n)
(

k
2j−1

− l
)

(4.24)

and the fact that φ(n)(x) = 0 for x ≤ 0 and x ≥ D− 1 allow one to determine values
of φ(n)(x) = 0 at x = k/2j for k = 1, 3, 5, .., 2j(D− 1)− 1 and j = 1, 2.... This algorithm
also holds for n = 0 which corresponds to the scaling function itself. These two
matrices P1 and P2 can be used throughout the algorithm and we can continue as
follows until a desired resolution of 2q is obtained :
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for j= 2,3,..,q

for k=1,3,5,..,2^(j − 1)− 1

Φ
(

k
2j

)
= P1Φ

(
k

j−1

)
Φ
(

k
2j + 1

2

)
= P1Φ

(
k

2j−1

)
end

end

4.1.1 Plot of scaling and wavelet functions

Figure 4.1: Scaling and Wavelet Function for D=4, 6, 8, 20
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Chapter 5

Evaluation of
Wavelet-Galerkin
Parameters

5.1 Wavelet-Galerkin – Introduction

One way to discretize a differential equation

Au = f (5.1)

is to choose a finite number of functions, and to approximate the exact solution by
a combination of those trial functions. Methods based on this approach are called
projection methods since the approximate solution is nothing but a projection of the
exact solution onto the subspace spanned by the trial functions.

In projection methods, the approximate solution ũ(x) is written in terms of the
base functions φj as

ũ(x) =
n∑

j=1

cjφj (5.2)

In 1917, the Russian engineer V.I. Galerkin proposed a projection method based on
the weak form, or equation of virtual work. To derive the weak form one chooses a

35



set of test functions against which to test the residual, and imposes the condition
that the residual be orthogonal to the test functions. So, given an inner product
〈·, ·〉 the weak form can be written as

〈v, (Aũ− f )〉 = 0 (5.3)

Galerkin suggested that the equation should be satisfied for all v of the same form
as ũ(x). That is v(x) =

∑n
i=1 aiφi. Since the only way to ensure this is to enforce

(5.3) for each φ1 separately, one chooses the test functions to be the same as the
trial functions, and (5.3) can be written as

n∑
j=1

cj〈φi,Aφj〉 = 〈φi, f 〉 i = 1, 2, ..,n (5.4)

The Galerkin solution is obtained by solving for cj.

The Wavelet-Galerkin method is a special case of Galerkin method wherein the
basis set used is the Daubechies wavelet family of a particular genus. This method
was initially implemented by Amartunga et al 1994 [11]. Though being frequently
used for its simplicity, a difficulty arose because the wavelet based expansion is
hard to join the boundary conditions. Since then, two alternative algorithms for
the implementation of WG method.

Lu et al 1996 [8] proposed a first alternative called “Fictitious Boundary Ap-
proach”. The difficulty isn’t solved essentially. Only the problems that have the pe-
riodic boundary conditions or the periodic distributions can be dealt with using this
approach. To satisfy the coordinate selection rule of Galerkin method, a fictitious
boundary is assumed. In order to ensure the real solution within the substantial
interval for the assumed problem, an additional condition is also considered that
the solution might satisfy the real boundary condition. Therefore the solution of
u(x), which is expanded by a complete coordinate and satisfies both of the governing
equation and the real boundary conditions, is unique. In order to implement this
method the following parameters were to be evaluated.

2-Term Connection Coefficient :

Γ
d1,d2
j,l,m =

∫ ∞
−∞

φ
(d1)
j,l (x)φ

(d2)
j,m (x)dx j,k,m ∈ Z (5.5)

Moment term :

Mp
l =

∫ ∞
−∞

xpφ(x− l) p, l ∈ Z (5.6)
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Shih et al 1996 [10] proposed better and universal alternative from here on re-
ferred as ”Bounded Wavelet Galerkin”. We note that the connection coefficients
and the associated computation algorithms developed in Latto et al 1991 [9] are
essentially based on an unbounded domain. It is therefore not surprising that the
above-mentioned applications of the Wavelet-Galerkin method are limited to the
cases where the problem domain is unbounded or the boundary condition is peri-
odic. In order to apply the Wavelet-Galerkin method to the solution of finite domain
problems, the same parameters are to be evaluated in that finite domain. Articles
[10] and [12] were referred to calculate the following parameters:

Multiple-Integrals of scaling functions :

θn(x) =

∫ x

0
θn−1dy, θ0(x) = φ(x)n ∈ Z (5.7)

Proper Moment term :

Mm
k (x) =

∫ x

0
ymφ(y− k) m,k ∈ Z (5.8)

2-Term Proper Connection Coefficient :

Γn
k(x) =

∫ x

0
φ(n)(y− k)φ(y)dy k,n ∈ Z (5.9)

5.2 Wavelet-Galerkin Parameters Evaluation

The parameters required for implementation of Fictitious-Boundary approach are
evaluated in the following sections.

5.2.1 Evaluation of Improper connection coefficients

To compute:

Γ
d1,d2
j,l,m =

∫ ∞
−∞

φ
(d1)
j,l (x)φ

(d2)
j,m (x)dx j,k,m ∈ Z (5.10)

where d1 and d2 are orders of diffrentiation. Assume the derivatives are well de-
fined. Using the change of variables (2jx− l)→ x we get

Γ
d1,d2
j,l,m = 2jd

∫ ∞
−∞

φ(d1)(x)φ(d2)(x−m + l)dx = 2jd Γ
d1,d2
0,0,m−l (5.11)

37



where d = d1 + d2. Now consider the integral term
∫∞
−∞ φ(d1)(x)φ(d2)(x−m + l)dx.

Integrating by parts we get

Γ
d1,d2
0,0,m−l = φ(d1−1)(x)φ(d2)(x−m + l)

∣∣∣∞
−∞
−
∫ ∞
−∞

φ(d1−1)(x)φ(d2+1)(x−m + l)dx

(5.12)

The first term is zero since the wavelets are compactly supported. So, on repeated
integration we finally end up with the following relation

Γ
d1,d2
j,l,m = (−1)d1 2jd Γ

0,d
0,0,m−l (5.13)

Therefore, it is sufficient to just evaluate

Γd
l =

∫ ∞
−∞

φ
(d)
l (x)φ(x)dx l ∈ Z (5.14)

Consequently,

Γ
d1,d2
j,l,m = (−1)d1 2jd Γd

l (5.15)

The supports of φ and φ(d)
l only overlap when [2−D ≤ l ≤ D− 2]. So there are only

2D− 3 non zero connection coefficients to be determined. Let the column vector

Γd =
{

Γd
l
}D−2

l=2−D
(5.16)

We know φj−1,l(x) can be written as
∑D−1

k=0 akφj,2l+k(x). (Note: pk =
√

2ak). Putting
j = 0 in this equation and diffrentiating it d times

φl(x) =
D−1∑
k=0

φ
(d)
1,2l+k(x) = 2d√2

D−1∑
k=0

akφ
(d)
2l+k(2x) (5.17)

Substituting the above results and dilation equation (2-scale eqn.) into Γd
l we get
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Γd
l =

∫ ∞
−∞

√2
D−1∑
r=0

arφr(2x)

2d√2
D−1∑
s=0

asφ
(d)
2l+s(2x)

dx (5.18)

= 2d+1
D−1∑
r=0

D−1∑
s=0

aras

∫ ∞
−∞

φr(2x)φ
(d)
2l+s(2x)dx 2x→ x (5.19)

= 2d
D−1∑
r=0

D−1∑
s=0

aras

∫ ∞
−∞

φr(x)φ
(d)
2l+s(x)dx x− r→ x (5.20)

= 2d
D−1∑
r=0

D−1∑
s=0

aras

∫ ∞
−∞

φ(x)φ
(d)
2l+s−r(x)dx (5.21)

which can be rewritten as

D−1∑
r=0

D−1∑
s=0

arasΓd
2l+s−r =

1

2d Γd
l l ∈ [2−D,D− 2] (5.22)

Let n = 2l + s− r. We know Γd
l is non-zero only for n ∈ [2−D,D− 2]. Also r and s

are restricted to [0,D−1]. Since s = n + r−2l, the inequality 0 ≤ s ≤ D−1 becomes
2l− n ≤ r ≤ D− 1 + 2l− n. This is fullfilled for max(0, 2l− n) ≤ r ≤ min(D− 1,D−
1+2l−n). Let p = 2l−n. Then, r1(p) = max(0,p) and r2(p) = min(D−1,D−1+p).
Hence the above equation becomes

D−2∑
n=2−D

ā2l−nΓd
n =

1

2d Γd
l for l ∈ [2−D,D− 2] where āp =

r2(p)∑
r1(p)

arar−p (5.23)

The above equation in matrix-vector form is

(A − 2−dI)Γd = 0 (5.24)
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where A is a (2D− 3) x (2D− 3) matrix with elements [A]l,n = ā2l−n. Both l and n
varies in the interval [2−D,D− 2].

It can be proved numerically that for D = 4 → 30 that 2−d (d ∈ [0,D − 1]) is
indeed a Eigen value of the matrix A. We can conclude that Γd is the Eigen vector
corresponding to the Eigen value 2−d. We need only normalize the this vector. To
this end we use the vanishing moment property of the scaling function. For d < D/2
we have

xd =
∞∑
−∞

Md
l φ(x− l) (5.25)

Diffrentiating this d times we end up getting

d! =
∞∑
−∞

Md
l φ

(d)(x− l) (5.26)

Multiplying both sides with φ(x) and integrating we obtain

d!

∫ ∞
−∞

φ(x)dx =
∞∑
−∞

Md
l

∫ ∞
−∞

φ(x)φ(d)(x− l)dx =
D−2∑
2−D

Md
l Γd

l (5.27)

Thus, normalizing equation is

d! =
D−2∑
2−D

Md
l Γd

l (5.28)

5.2.2 Evaluation of Improper Moment terms

The moment terms are defined as

Mp
l =

∫ ∞
−∞

xpφ(x− l), l,p ∈ Z (5.29)
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For p = 0 it is obvious that M0
l = 1 , l ∈ Z. Let l = 0 the dilation equation thus

becomes,

Mp
0 =

∫ ∞
−∞

xpφ(x)dx (5.30)

=
√

2
D−1∑
k=0

ak

∫ ∞
−∞

xpφ(2x− k)dx, 2x→ x (5.31)

=

√
2

2p+1

D−1∑
k=0

ak

∫ ∞
−∞

xpφ(x− k)dx (5.32)

which can be written as,

Mp
0 =

√
2

2p+1

D−1∑
k=0

akMp
k (5.33)

Now consider the term Mp
l using variable transformation y = x− l yields,

Mp
l =

∫ ∞
−∞

(y + l)pφ(y)dy (5.34)

Expanding the term (y + l)p using binomial theorem

Mp
l =

p∑
n=0

(
p
n

)
lp−n

∫ ∞
−∞

ypφ(y)dy (5.35)

or

Mp
l =

p∑
n=0

(
p
n

)
lp−nMn

0 (5.36)
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Using the above relation (5.33) can be written as,

Mp
0 =

√
2

2p+1

D−1∑
k=0

ak

p∑
n=0

(
p
n

)
kp−nMn

0 (5.37)

=

√
2

2p+1

p−1∑
k=0

(
p
n

)
Mn

0

D−1∑
k=0

akkp−nMn
0 +

√
2

2p+1
Mp

0

D−1∑
k=0

ak (5.38)

Solving for Mp
0

Mp
0 =

√
2

2(2p − 1)

p−1∑
k=0

(
p
n

)
Mn

0

D−1∑
k=0

akkp−nMn
0 (5.39)

The parameters required for implementation of Bounded Wavelet Galerkin approach
are evaluated in the following sections.

5.2.3 Evaluation of θn(x)

The multiple integrals of scaling functions is defined by the following relation

θn(x) =

∫ x

0
θn−1dy, & θ0(x) = φ(x) n ∈ Z (5.40)

We just need the values of θn(x) at integer values, for this we proceed much similar
to our cascade algorithm, except in this case for x ≥ D− 1, θn(x) 6= 0. It is given by,

θn(x) =
n−1∑
j=0

(x−D− 1)j

j! θn−j(D− 1) (5.41)
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where θ1(D− 1) = 1, but the values of θn−j(D− 1) for j = 0, 1, 2..,n− 2 are still to be
determined. Substituting x = D− 1 in the 2 scale relation for θn(x) and simplifying
further yields,

θn(D− 1) =
1

2n − 2

n−1∑
j=1

D−1∑
k=0

pk
(D− 1− k)j

j!

 θn−j(D− 1) n=2,3,.. (5.42)

Now that we have θn(x) for x ≥ D − 1 the values of θn(x) for x = 1, 2, ..D − 2 can be
determined from the following linear system of equations

(I− 2−nP)Θn = c (5.43)

where

P = [p2j−k]1≤j,k≤D−2 (5.44)
Θn = [θn(1), θn(2), .., θn(D− 2)]T (5.45)

c = [c1, c2, .., cD−2]T (5.46)

ci =

k=0,1,..,D−1∑
2i−k≥D−1

pkθn(2i− k) (5.47)

Refer [10] for the details of derivation.

5.2.4 Evaluation of Mm
k (x)

To compute the following integral

Mm
k (x) =

∫ x

0
ymφ(y− k) m,k ∈ Z (5.48)

we just need to perform successive by parts integration on the above integral

Mm
k (x) =

m∑
i=0

(−1)i m!

(m− i)!x
m−1θi+1(x− k) + (−1)m+1m! θm+1(−k) (5.49)
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Hence, the integral is evaluated in terms of θi(x) which is evaluated in the previous
section.

5.2.5 Evaluation of Γn
k(x)

The proper 2-term connection coefficient is defined by the relation

Γn
k(x) =

∫ x

0
φ(n)(y− k)φ(y)dy (5.50)

We note that Γn
k(x) has the following properties

Γn
k(x) = Γn

k(D− 1) for x ≥ D− 1 (5.51)
Γn

k(x) = 0 for |k|≥ D− 1 or x ≤ min(0,k) (5.52)
Γn
−k(D− 1) = (−1)nΓn

k(D− 1) for k ≥ 0 (5.53)
Γn
−k(x) = (−1)nΓn

k(D− 1) for x + k ≥ D− 1

or
Γn

k(x) = Γn
k(D− 1) for x− k ≥ D− 1 (5.54)

where Γn
k(D − 1) is the improper 2-term connection coefficient which we already

have derived. These properties can be easily verified with compact supports of the
integrand terms (5.51),(5.52),(5.54) and by-part integration (5.53). Now, applying
the 2-scale relations to (5.50)

Γn
k(x) = 2n

D−1∑
i=0

D−1∑
j=0

pipj

∫ x

0
φ(n)(2y− 2k− i)φ(2y− j)dy

= 2n−1
D−1∑
i=0

D−1∑
j=0

pipj

∫ 2x−j

0
φ(n)(y− 2k− i + j)φ(y)dy

= 2n−1
D−1∑
i=0

D−1∑
j=0

pipjΓ
n
2k+i−j(2x− j) (5.55)

To compute the values of Γn
k(x) at integer x we need the values of Γn

k(D−1) which are
equal to the improper connection coefficients. Now that the values of improper con-
nection coefficients are available, we note that there are only (D− 2)2 independent
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members of Γn
k(x) that needs to be evaluated. According to (5.51) to (5.54), these

independent set is expressed as {Γn
k(x) : x = 1, 2, ...,D− 2; x−D + 2 ≤ k ≤ x− 1}.

Let the independent members be packed in a vector

Γn = [Γn(1) Γn(2) .... Γn(D− 2)]T (5.56)

where

Γn(i) = [Γn
i−D+2(i) Γn

i−D+3(i) .... Γn
i−1(i)]T , i = 1, 2...D− 2 (5.57)

By (5.55) to (5.57), for the kth (k = 1, 2..D − 2) component of Γn(i), which is in the
ith (i = 1, 2, ..D− 2) component of Γn, we have

Γn
i−(D−2)+(k−1)(i) = 2n−1

D−1∑
i1=0

D−1∑
j1=0

pi1pj1Γn
2[i−(D−2)+(k−1)]+i1−j1(2i− j1) (5.58)

The set of equations obtained above has the unknown terms Γn
k(x) ∈ Γn and some

known terms which belongs to set of improper connection coefficients Γn
k(D−1). By

the properties of the connection coefficients (5.55) to (5.57), (5.58) can be rewritten
in the following form

21−nΓn
i−(D−2)+(k−1)(i)−

∑
µ1(i,k,D)

pi1pj1Γn
2[i−(D−2)+(k−1)]+i1−j1(2i− j1)

=
∑

µ2(i,k,D)

pi1pj1Γn
2[i−(D−2)+(k−1)]+i1−j1(2i− j1)

(5.59)

with

µ(i,k,D) = µ1(i,k,D) ∪ µ2(i,k,D) = {(i1, j1) : 0 ≤ i1, j1 ≤ D− 1} (5.60)
µ2(i,k,D) = {(i1, j1) ∈ µ(i,k,D) : 2i− j1 ≥ D− 1 or 2k + i1 ≤ D− 1} (5.61)

If the RHS term is denoted by d((i− 1)(D− 2) + k). Then, from (5.51) and (5.54)
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d((i− 1)(D− 2) + k) =
∑

µ2(i,k,D)

pi1pj1Γn
2[i−(D−2)+(k−1)]+i1−j1(D− 1) (5.62)

Expressing (5.62) into a vector format, we have

di = [d((i− 1)(D− 2) + 1), ...d((i− 1)(D− 2) + k), ...,d(i(D− 2))]T (5.63)

(5.59) can now be expressed in the following matrix form

(21−nI −Qi,i)Γn(i)−
D−2∑

j=1,j 6=i
Qi,jΓn(j) = di, for i = 1, 2, ...,D− 2 (5.64)

where Qi,j is a (D-2)x(D-2) matrix and I is unit square martix of order D− 2. Now
in order to generalize the elements of Qi,j matrix, consider the second term in the
LHS of (5.59):

∑
µ1(i,k,D)

pi1pj1Γn
2[i−(D−2)+(k−1)]+i1−j1(2i− j1) (5.65)

We know from (5.60) and (5.61)

µ1(i,k,D) = {(i1, j1) ∈ µ(i,k,D) : 2i− j1 ≤ D− 2 and 2k + i1 ≥ D} (5.66)

Therefore, i1 and j1 belongs to the sets {D − 2k, D − 2k + 1, ..., D − 1} and {2i −
D + 2, 2i − D + 3, ..., D − 1} respectively. For the sake of simplicity, we will write
i1 = D − 1 − 2k + m and j1 = 2i − q where m,q ∈ [1,D − 2]. This can be justified
since pi1 and pj1 are zeros when i1, j1 > D− 1. Substituting in (5.65) we obtain

∑
µ1(i,k,D)

p2i−qpD−1−2k+mΓn
q−(D−2)+m−1(q) (5.67)

Upon replacing q with j we can construct the equivalent matrix form :
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D−2∑
j=1

Qi,jΓn(j) =

 ∑
µ1(i,k,D)

p2i−jpD−1−2k+mΓn
j−(D−2)+m−1(j) m = 1, 2, ...,D− 2


(5.68)

Hence the relation Qi,j
k,m = p2i−jpD−1−2k+m can be established. Finally, we get the

following linear system of equation for x = 1, 2, ..,D − 2 and k = x − D + 2, ..., x − 1
from (5.63):

Q̃Γn = (21−nĨ−Q)Γn = d (5.69)

where Ĩ is square unit matrix of order (D − 2)2; Q = (Qi,j) is augmented square
matrix of order (D − 2)2 and d = [d1, d2, ..., dD−2]T . It is important to note that
eigen value set of matrix Q includes 2−m, m = 0, 1, ...,D − 2. Also to be noted is
that the system is singular for n > 0 and the rank-deficiency is n. To have a linear
independent system of equation we seek the following additional relations among
the components of Γn. We already know,

∞∑
l=−∞

lnφ(n)(x− l) = n! (5.70)

multiplying by φ(y) and integrating from 0 to x

∞∑
l=−∞

lnΓn
k(x) = n!

∫ x

0
φ(y)dy = n! θ1(x) (5.71)

Applying (5.51)-(5.54) on to (5.71)

x−1∑
l=x−D+2

lnΓn
k(x) = n! θ1(x)−

D−2∑
D−1−x

lnΓn
k(D− 1) (5.72)

In matrix notations (5.72) is
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[(x−D + 2)n, ..., (x− 1)n]Γn(x) = n! θ1(x)−
D−2∑

D−1−x
lnΓn

k(D− 1) (5.73)

To accommodate the above equations into the previous system of equations we
make the following changes to the matrix Q̃. For i = 1, 2, ..,n,

1. replace the ith row of Q̃i,i = 21−nI−Qi,i and Q̃i,j = −Qi,j by [(i−D+2)n, ..., (i−
1)n] and a zero vector of order D− 2 respectively;

2. replace d((i−1)(D−2)+i), the ith element of di, by n! θ1(x)−
∑D−2

D−1−x lnΓn
k(D−

1).

NOTE:
The MATLAB function conncoeff(x,n,k,D) returns Γn

k(x) for a
given wavelet genus ’D’

For the sake of simplicity and to avoid repetition in the future the following re-
lation needs to be evaluated.

θ
j,k
1 (1) =

∫ 1

0
φj,k(y)dy (5.74)

Mm
j,k(1) =

∫ 1

0
ymφj,k(y)dy (5.75)

Γ
n,0
j,k,m(1) =

∫ 1

0
φ

(n)
j,k (y)φj,m(y)dy (5.76)

Upon performing variable transformations x = 2jy − k for (5.74,5.76) and x = 2jy
for (5.75) and further simplification yields,

θ
j,k
1 (1) = 2−j/2[θ1(2j − k)− θ1(−k)] (5.77)

Mm
j,k(1) = 2−j(n+0.5)Mm

k (2j) (5.78)

Γ
n,0
j,k,m(1) = 2nj

[
Γn

k−m(2j −m)− Γn
k−m(−l)

]
(5.79)

48



Chapter 6

Solving Differential
equations using Daubechies
wavelets

6.1 Fictitious Boundary Approach

Example 1

Consider the following 1-D Laplace equation

d2u(x)

dx2
+ β2u(x) = 0, β = 9.5π x ∈ [0, 1] (6.1)

with Dirichlet boundary conditions u(0) = 1 and u(1) = 0.

The solution is sought in form of wavelet expansion for unknown function u(x)
as

u(x) =
2j∑

k=1−D
ckφj,k(x) (6.2)

Substituting in the ODE, we get
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2j∑
k=1−D

ck
(
φ′′j,k(x) + β2φj,k(x)

)
= Residual = R(x) (6.3)

Now in fictitous boundary approach [8], we widen the original domain [0, 1] to a
broader fictitious domain

[
1−D

2j , D−1+2j

2j

]
, so that all the wavelet bases used in (6.2),

entirely lies in the working domain. In order to determine ck, we take the inner
product of both sides of (6.3) with φj,l(x). The widened boundary implies, we will
not have to deal with proper connection coefficients, since the compact support of
the wavelets lies entirely within the domain of integration.

2j∑
k=1−D

ck

(∫ ∞
−∞

φ′′j,k(x)φj,l(x) + β2
∫ ∞
−∞

φj,k(x)φj,l(x)

)
=

∫ ∞
−∞

R(x)φj,l(x) = 0 (6.4)

=⇒
2j∑

k=1−D
ck
(

Γ
2,0
j,k,l + β2δk,l

)
= 0 l = 1−D→ 2j (6.5)

To meet the additional conditions on boundary, we let the wavelet expansion satisfy
the BCs as

2j∑
k=1−D

ckφj,k(0) = u(0) (6.6)

2j∑
k=1−D

ckφj,k(1) = u(1) (6.7)

Add these two to the system of linear equations obtained in (6.5) and solve the
over-constrained system of equation for ck by exploiting the pseudo-inverse function
offered by MATLAB – pinv().
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Figure 6.1: Wavelet-Galerkin and exact solutions

Example 2

Consider the same problem with β = 8π and mixed boundary conditions u′(0) = 0
and u(1) = 1. The problem formulation remains the same except for the boundary
conditions wherein the equation now becomes

∑2j
k=1−D ckφ

′
j,k(0) = u′(0).

Figure 6.2: Wavelet-Galerkin and exact solutions
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6.2 Bounded Wavelet-Galerkin Method

Example 1

Consider the case of a uniform axial bar as fig (3.1). Let the load on the bar be
q(x) = 1000AE. In order to obtain the displacement function we need to solve the
following equation

AEu′′ + 1000AE = 0 (6.8)
or simply
u′′ + 1000 = 0

The boundary conditions being u(0) = 0 and u′(1) = 0. The exact solution to this
system is given by

u(x) = 1000x− 500x2 (6.9)

For Wavelet-Galerkin method we assume an approximate solution

û(x) =
2j−1∑

k=2−D
ckφj,k(x) (6.10)

Plugging this back on the original equation

2j−1∑
k=2−D

ckφ
′′
j,k(x) = −1000 (6.11)

Taking inner product with φj,m(x) over the domain [0,1]

2j−1∑
k=2−D

ck

∫ 1

0
φ′′j,k(x)φj,m(x) = −1000

∫ 1

0
φj,m(x) (6.12)
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2j−1∑
k=2−D

ckΓ
2,0
j,k,m(1) = −1000 θ

j,m
1 (1) m ∈ {2−D, 3−D, ..., 2j − 1} (6.13)

which can be expressed in the following matrix notation

ΩC = f (6.14)

where Ωm,k = Γ
2,0
j,k,m(1), fm = −1000 θ

j,m
1 (1) and Ck is the unknown vector to be

found. Before solving this equation, we need to enforce the boundary conditions. A
simple substitution on to (6.10) yields the following relations

2j−1∑
k=2−D

2j/2ckφ(−k) = 0 (6.15)

2j−1∑
k=2−D

23j/2ckφ(2j − k) = 0 (6.16)

Adding these two equations in to the matrix system obtained in (6.14), we end up
with a set of 2j + D linear equations and 2j + D − 2 unknowns. Exploiting the
pseudo-inverse function offered by MATLAB – pinv(), we are able to finally solve
the over-constrained system to obtain the best fit solution.

Figure 6.3: Wavelet-Galerkin and exact solutions
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Example 2

Consider the 2-D poissons Equation

∂2u
∂x2

+
∂2u
∂y2

= 2(x2 + y2), (x, y) ∈ [0, 1] (6.17)

with the boundary conditions

u(x, 0) = u(0, y) = 0 & u(x, 1) = x2 & u(1, y) = y2 (6.18)

The exact solution to this system is u(x, y) = x2y2. Let the approximate solution be

û(x, y) =
2j−1∑

k,l=2−D
Ck,lφj,k(x)φj,l(y) (6.19)

Plugging this back on the original equation (6.17)

2j−1∑
k,l=2−D

Ck,l
(
φ′′j,k(x)φj,l(y) + φj,k(x)φ′′j,l(y)

)
= 2(x2 + y2) (6.20)

Taking inner product with φj,m(x) first and then φj,n(y) later, we obtain,

2j−1∑
k,l =2−D

Ck,l

[(∫ 1

0
φ′′j,k(x)φj,m(x)dx

)(∫ 1

0
φj,l(y)φj,n(y)dy

)

+

(∫ 1

0
φ′′j,k(x)φj,m(x)dx

)(∫ 1

0
φj,l(y)φj,n(y)dy

)]
= 2

(∫ 1

0
x2φj,m(x)dx

)(∫ 1

0
φj,n(y)dy

)
+ 2

(∫ 1

0
y2φj,n(y)dy

)(∫ 1

0
φj,m(x)dx

)
(6.21)

Simplifying the above equation
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2j−1∑
k,l =2−D

Ck,l
[
Γ

2,0
jkm(1)Γ

0,0
jln(1) + Γ

0,0
jkm(1)Γ

2,0
jln(1)

]
= 2M2

jm(1)θ
jn
1 (1) + 2M2

jn(1)θ
jm
1 (1)

(6.22)

where m,n ∈ {2−D→ 2j − 1}. Before trying to solve the set of equations, we need
to incorporate the boundary conditions.
u(x,0) = 0

û(x, 0) =
2j−1∑

k=2−D
Ck,lφj,k(x)φj,l(0) = 0 (6.23)

Taking inner product with φj,m(x),

2j−1∑
k=2−D

Ck,lΓ
0,0
jkm(1)φj,l(0) = 0 m ∈ {2−D→ 2j − 1} (6.24)

u(x,1) = x2

û(x, 1) =
2j−1∑

k=2−D
Ck,lφj,k(x)φj,l(1) = x2 (6.25)

Taking inner product with φj,m(x),

2j−1∑
k=2−D

Ck,lΓ
0,0
jkm(1)φj,l(0) = M2

jm(1) m ∈ {2−D→ 2j − 1} (6.26)

u(0,y) = 0

û(0, y) =
2j−1∑

k=2−D
Ck,lφj,k(0)φj,l(y) = 0 (6.27)
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Taking inner product with φj,n(y),

2j−1∑
k=2−D

Ck,lΓ
0,0
jln(1)φj,k(0) = 0 n ∈ {2−D→ 2j − 1} (6.28)

u(1,y) = y2

û(0, y) =
2j−1∑

k=2−D
Ck,lφj,k(1)φj,l(y) = y2 (6.29)

Taking inner product with φj,n(y),

2j−1∑
k=2−D

Ck,lΓ
0,0
jln(1)φj,k(0) = M2

j,n(1) n ∈ {2−D→ 2j − 1} (6.30)

The values for the coefficients Ck,l is obtained by solving the obtained sets of
equations. Again, this is a over constrained system which requires the MATLAB
function – pinv() to solve. The exact solution, WG solution and error distribution
are shown in the figures below.
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Figure 6.4: Wavelet-Galerkin and exact solutions

Example 3

Consider the 2-D poissons Equation

∂2u
∂x2

+
∂2u
∂y2

= 2(x2 − x + y2 − y), (x, y) ∈ [0, 1] (6.31)

with the boundary conditions

u(x, 0) = u(0, y) = 0 & u(x, 1) = 0 & u(1, y) = 0 (6.32)

the exact solution to this system is

u(x, y) = xy(1− x)(1− y) (6.33)

The exact solution, WG solution and error distribution are shown in the figures
below.
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Figure 6.5: Wavelet-Galerkin and exact solutions

6.3 Wavelet Galerkin for coupled ODEs

The bounded WG method seems to have an unusual advantage when implemented
to a system of coupled ODEs, in that the equations are decoupled when written in
wavelet forms. Consider the following free vibrating spring-mass-damper system
for example.

Figure 6.6: Spring-Mass Damper system
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The system is governed by the following set of coupled ODEs

m1ẍ1 + c1ẋ1 + k1x1 + k2(x1 − x2) + c2(ẋ1 − ẋ2) = 0 (6.34)
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0 (6.35)

Let the boundary conditions be x1(0) = X1, ẋ1(0) = Ẋ1, x2(0) = X2, ẋ2(0) = Ẋ2. The
above equation can be written in matrix form as

[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
c1 + c2 −c2
−c2 c2

] [
ẋ1
ẋ2

]
+

[
k1 + k2 −k2
−k2 k2

] [
x1
x2

]
=

[
0
0

]
(6.36)

The non-diagonal terms clearly indicates coupling of the two equations. We will try
to evaluate the solution of the system using WG method. Let

x1(t) =
2jT−1∑
k=2−D

ckφjk(t)

x2(t) =
2jT−1∑
k=2−D

dkφjk(t) t ∈ [0,T] (6.37)

Substituting on to the system of equations and taking inner product with φjm(x)
yields

(6.38)

2jT−1∑
k =2−D

ck
[
m1Γ

2,0
jkm(T) + (c1 + c2)Γ

1,0
jkm(T) + (k1 + k2)Γ

0,0
jkm(T)

]

+
2jT−1∑

k =2−D
dk
[
(−c2)Γ

1,0
jkm(T) + (−k2)Γ

0,0
jkm(T)

]
= 0

(6.39)

2jT−1∑
k =2−D

ck
[
(−c2)Γ

1,0
jkm(T) + (−k2)Γ

0,0
jkm(T)

]

+
2jT−1∑

k =2−D
dk
[
m2Γ

2,0
jkm(T) + c2Γ

1,0
jkm(T) + k2Γ

0,0
jkm(T)

]
= 0
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Let A1,A2,B1,B2 be matrices and C,D be vectors whose elements are

A1m,k = m1Γ
2,0
jkm(T) + (c1 + c2)Γ

1,0
jkm(T) + (k1 + k2)Γ

0,0
jkm(T) (6.40)

A2m,k = −c2Γ
1,0
jkm(T)− k2Γ

0,0
jkm(T) (6.41)

B1m,k = −c2Γ
1,0
jkm(T)− k2Γ

0,0
jkm(T) (6.42)

B2m,k = m2Γ
2,0
jkm(T) + c2Γ

1,0
jkm(T) + k2Γ

0,0
jkm(T) (6.43)

Ck = ck (6.44)
Dk = dk (6.45)

(6.38,6.39) can now be written as

[
A1 A2
B1 B2

] [
C
D

]
=

[
0
0

]
(6.46)

It is evident from the above matrix equation that the original system is now de-
coupled. To incorporate the boundary condition we follow the same procedure as
before.

x1(0) =
2jT−1∑
k=2−D

ckφjk(0) = [BC1]C = X1 (6.47)

ẋ1(0) =
2jT−1∑
k=2−D

ckφ
′
jk(0) = [BC2]C = Ẋ1 (6.48)

x2(0) =
2jT−1∑
k=2−D

dkφjk(0) = [BC3]D = X2 (6.49)

ẋ2(0) =
2jT−1∑
k=2−D

dkφ
′
jk(0) = [BC4]D = Ẋ2 (6.50)

where [BC1]k = φjk(0), [BC2]k = φ′jk(0) and so on. Finally the set of equations to
be solved becomes,
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
A1 A2
B1 B2

BC1 0
BC2 0

0 BC3
0 BC4


[
C
D

]
=



0
0

X1

Ẋ1
X2

Ẋ2

 (6.51)

Solving for the unknown [C; D], the WG solution is obtained. Conventional methods
involve decoupling the mass, stiffness matrix and incorporating a damping model to
solve the equations. WG method circumvents these issues and produces a solution
much closer to the analytical solution.

Example 1

For m1 = 2, m2 = 5, k1 = 20, k2 = 30, c1 = 0.01, c2 = 0.02, the wavelet-Galerkin
scheme is applied. The results are shown below.

Figure 6.7: Wavelet-Galerkin, exact solutions and Errors
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Example 2

For m1 = 4, m2 = 10, k1 = 100, k2 = 150, c1 = 0.1, c2 = 0.2, the wavelet-Galerkin
scheme is applied. The results are shown below.

Figure 6.8: Wavelet-Galerkin, exact solutions and Errors
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Chapter 7

Conclusions and Future
Scope

The main benefits of Haar wavelet methods are its simplicity (already a small
number of grid points guarantees the necessary accuracy) and universality (the
same approach is applicable for a wide class of PDEs). The method is very con-
venient for solving boundary value problems, since the boundary conditions are
taken into account automatically. Function approximations and Haar wavelet in-
tegration have also shown promising results, thereby cementing Haar wavelets as
a splendid choice for numerical analysis.

The wavelet-Galerkin method has been shown in the literature to be a powerful
tool for the numerical solution of partial differential equations. The computation
of wavelet-Galerkin approximation relies heavily on the evaluation of connection
coefficients, which are integrals with their integrands being the product of wavelet
bases and their derivatives or integrals. We have described the algorithms for exact
evaluations of 2-term connection coefficients for Daubechies’ compactly supported
orthonormal wavelets on a bounded interval. For non-linear and homogeneous lin-
ear equations higher order connection coefficients like the following needs to be
evaluated [10]

Λ
m,n
k =

∫ x

0
ymφ(n)(y− k)φ(y)dy

Ω
m,n
j,k =

∫ x

0
φ(m)(y− j)φ(n)(y− k)φ(y)dy

One of the serious drawbacks of wavelet analysis is its restriction to express non-
polynomial functions. When the differential equation involves a non-polynomial
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function like sin(x) or log(x), the integrands cannot be evaluated. While this prob-
lem can still be solved by using a polynomial best-fit curve for such functions inside
the domain, the method is no longer computationally efficient. Another drawback of
the algorithms is it’s exponential increase in computational cost. For a 1-D problem
with resolution j and genus D, the matrix size generated is usually (2j +D)x(2j +D).
The same for a 2-D problem is (2j + D)2x(2j + D)2. This calls for better matrix in-
version algorithms.

The Wavelet-Galerkin method shows excellent convergence for all the problems
in this thesis. However, the spike in error plot for PDEs at (0, 0) needs to be stud-
ied. The method is also limited to problems with rectangular/circular/spherical
domains. Investigations has to be made for the algorithm to adapt for problems
involving complex domains.

The advantage of WG method over conventional method for solving coupled ODEs
is clearly demonstrated in the later part of the thesis. WG method undercuts the
need for damping models in such cases. Though, the example taken in the thesis
is a discrete system, the algorithm should perform well for continuous dynamic
systems (like beams) as well.
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Chapter 8

Appendix

MATLAB codes

The following MATLAB functions evaluates the improper connection coefficient vec-
tor as in (5.16) {Γd}
% Function that returns improper connection coefficient vector

function val = imp_conn_coeff(d,D)

% Filter Coefficients

a = dbaux(D/2,sqrt(2));

A = zeros(2*D-3,2*D-3);

% Initializing the elements of the matrix

for i=1:2*D-3

for j=1:2*D-3

l = i-(D-1);

n = j-(D-1);

A(i,j)=a_bar(2*l-n);

end

end

[V0,D0] = eig(A);

D0 = diag(D0);

[t,~]=size(D0);

% Finding the required eigen vector

for i=1:t

if abs(D0(i)-2^-d)<=1e-5

break;

end

end

tau = V0(:,i);

% Calculting the moment terms
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M = zeros(d+1,2*D-3);

M(1,:) = ones(1,2*D-3);

% Moment for l=0

for p=1:d

const1 = 1/(sqrt(2)*(2^p - 1));

const2 = 0;

for n=0:p-1

for k=0:D-1

const2 = const2 + nchoosek(p,n)*M(n+1,D-1)*a(k+1)*(k^(p-n));

end

end

M(p+1,D-1) = const1*const2;

end

% Moment for l!= 0

for p=1:d

for l=2-D:D-2

const3=0;

if l~=0

j = l+D-1;

for n=0:p

const3 = const3 + nchoosek(p,n)*(l^(p-n))*M(n+1,D-1);

end

M(p+1,j) = const3;

end

end

end

% d-th improper moment of the wavelet

M0=M(d+1,:);

% Normalizing with moment equation

const4 = (M0*tau)/factorial(d);

val = tau/const4;

end

% Function to evaluate the elements of the matrix A as per equation (5.24)

function val = a_bar(p,D)

a = dbaux(D/2,sqrt(2));

% Limits of the sum

r1 = max(0,p);

r2 = min(D-1,D-1+p);

val = 0;

for r=r1:r2

val = val + a(r+1)*a(r+1-p);

end

end

The following MATLAB function returns the proper connection coefficient vec-
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tor as in (5.56) {Γn}. (NOTE: The follwoing functions are written to evalaute the
integral at integer vales of x only. For non-integer values use 2-scale relations).
% Function that evaluates proper connection coefficient vector

function val = proper_conn_coeff_int(n,D)

p = dbaux(D/2,2);

% Q matrix

Qcell = cell(D-2,D-2);

for i=1:D-2

for j=1:D-2

q = zeros(D-2,D-2);

for k=1:D-2

for m=1:D-2

if 2*i-j>=0 && 2*i-j<=D-1 && D-1-2*k+m>=0 && D-1-2*k+m<=D-1

q(k,m) = p(2*i-j+1)*p(D-2*k+m);

end

end

end

Qcell{i,j}=q;

end

end

% Assemble the Q matrix

Q = cell2mat(Qcell);

% loading improper connection coefficnt values

TAU = conn_coeff(n);

% loading theta_1(x) values at integer ’x’

THET = theta_1();

%d vector

dcell = cell(D-2,1);

d_tmp = zeros(D-2,1);

for i=1:D-2

for k=1:D-2

%function that determines elements of ’d’ vector

d_tmp(k) = d_vect(p,TAU,i,k);

end

dcell{i,1} = d_tmp;

end

% Q-tilde matrix

Q_new = (eye((D-2)^2)*2^(1-n))-Q;

if n>0

%updating the matrix for n>0

a = (D-2)*ones(1,D-2);

Q_newcell = mat2cell(Q_new,a,a);

for i=1:n

norm_arr = i-D+2:1:i-1;

norm_arr = norm_arr.^n;
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for j=1:D-2

if i==j

Q_newcell{i,j}(i,:) = norm_arr;

else

Q_newcell{i,j}(i,:) = 0*norm_arr;

end

end

S = 0;

for l=D-1-i:D-2

if abs(l)<=D-2

S = S + (l^n)*TAU(l+D-1);

end

end

if i<=D-2

val = factorial(n)*THET(i+1) - S;

else

val = factorial(n) - S;

end

dcell{i}(i,1) = val;

end

Q_new = cell2mat(Q_newcell);

% Assemble the d-vector

d = cell2mat(dcell);

%solving for connection coefficients

TAU_x = Q_new\d;

else

% Assemble the d-vector

d = cell2mat(dcell);

%solving for connection coefficients vector

TAU_x = Q_new\d;

end

val = TAU_x;

end

% Function that returns values of theta_1(x) at integer ’x’

function val = theta_1(D)

p = dbaux(D/2,2);

P = zeros(D-2,D-2);

for j=1:D-2

for k=1:D-2

if (2*j-k)>=0 && (2*j-k)<=D-1

P(j,k) = p(2*j-k+1);

end

end

end

M = eye(D-2) - 0.5*P;
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c = zeros(D-2,1);

for i=1:D-2

for k=0:D-1

if 2*i-k>=D-1

c(i) = 0.5*p(k+1) + c(i);

end

end

end

val = M\c;

val = [0;val];

end

% Function that returns the elements of d-vector as in (5.63)

function val = d_vect(p,TAU,i,k,D)

S = 0;

for i1=0:D-1

for j1=0:D-1

if (2*i-j1)>=D-1 || (2*k+i1)<=D-1

if abs(2*(i-(D-2)+(k-1))+i1-j1)<=D-2

S = S + p(i1+1)*p(j1+1)*TAU(2*(i-(D-2)+ (k-1))+i1-j1+D-1);

end

end

end

end

val = S;

end

Now that we have the obtained the values of connection coefficients in vector
format, the following a generalized MATLAB function using the properties (5.51)
to (5.54) returns the connection coefficient corresponding to various n, k, x and D.
{Γn

k(x)}
% Generalized connection coefficient function

function val = conncoeff(x,n,k,D)

% Load the connection coefficient vectors

TAU = imp_conn_coeff(n,D);

TAU_x = proper_conn_coeff(n,D);

% to find : TAU^n_k(x)

val = 0;

if x>=D-1

if (k+D-1)>0 && (k+D-1)<2*D-2

val = TAU(k+D-1);

end

elseif abs(k)>=D-1 || x<=0 || x<=k

val = 0;

elseif x-k>=D-1
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if (k+D-1)>0 && (k+D-1)<2*D-2

val = TAU(k+D-1);

end

else

ktmp = (x-1)*(D-2)+(k-x+D-1);

val = TAU_x(ktmp);

end

end

The following sets of MATLAB functions are used to evaluate the proper multiple
integrals of wavelet functions θn(x).
% Function that returns $\theta_n(x)$ for all integer ’x’

function val = THETA(x,n)

global D;

if x>=D-1

T_nD = theta_nD(n);

S = 0;

for j=0:n-1

S = S + ((x-D+1)^j)/factorial(j)*T_nD(n-j);

end

val = S;

elseif x<=0

val = 0;

else

T_n = theta_n(n);

val = T_n(x);

end

end

% function that returns an array whose elements are $\theta_n(D-1) n=1->N$

% as per equation (5.45)

function val = theta_nD(N)

global D;

p = dbaux(D/2,2);

val = zeros(N,1);

val(1,1) = 1;

if N>=2

for n=2:N

a1 = (2^n-2)^(-1);

S = 0;

for j=1:n-1

E = 0;

for k=0:D-1

E = E + p(k+1)*((D-1-k)^j)/factorial(j);

end
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S = S + E*val(n-j,1);

end

val(n,1) = S*a1;

end

end

end

% Function that evaluates $\theta_n(x)$ at integer $0<=x<=D-1$

function val = theta_n(n)

global D;

p = dbaux(D/2,2);

P = zeros(D-2,D-2);

for j=1:D-2

for k=1:D-2

if (2*j-k)>=0 && (2*j-k)<=D-1

P(j,k) = p(2*j-k+1);

end

end

end

M = eye(D-2) - 2^(-n)*P;

T_nD = theta_nD(n);

c = zeros(D-2,1);

for i=1:D-2

for k=0:D-1

if 2*i-k>=D-1

m = 2*i-k;

S = 0;

for j=0:n-1

S = S + T_nD(n-j)*((m-D+1)^j)/factorial(j);

end

c(i) = c(i) + 2^(-n)*p(k+1)*S;

end

end

end

val = M\c;

end

The following MATLAB code is used to evaluate the proper moment term Mm
k (x)

as per equation (5.48)
% Function that evaluates $M_k^m(x)$ as per equation (3.73)

function val = moment_x(x,m,k)

S = 0;

% Loading necessary $theta_n(x)$ vectors

T_nDm = theta_nD(m+1);

T_nm = theta_n(m+1);
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for i=0:m

T_nD = theta_nD(i+1);

T_n = theta_n(i+1,T_nD);

S = S + ((-1)^i)*(factorial(m)/factorial(m-i))*x^(m-i)*THETA(x-k,i+1)...

+ (-1)^(m+1)*factorial(m)*THETA(-k,m+1);

end

val = S;

end

Connection Coefficients Table

Table 8.1: Table : The values of Γ1
k(x) for D = 6

x k Γ1
k(x) x k Γ1

k(x) x k Γ1
k(x)

1 -3 -0.96071829E-02 3 -1 -0.74488223E+00 5 -4 -0.34246575E-03
-2 0.2468291 5E+00 0 0.45379527E-02 -3 -0.14611872E-01
-1 -0.10642085E+01 1 0.73437630E +00 -2 0.14520548E+00
0 0.82732896E+00 2 -0.12428316E+00 -1 -0.74520548E+00

2 -2 0.14376046E+00 4 -1 0.89648439E -5 0 -0.11162444E-16
-1 -0.771 13404E+00 0 0.74528563E +00 1 0 74520548E +00
0 0.74435080E-01 1 -0.14539422E+00 2 -0.14520548E+00
1 0.56789284E+00 2 0.1505397OE-001 3 0.14611872E-01

4 0.34246575E-03

Table 8.2: Table : The values of Γ2
k(x) for D = 6

x k Γ2
k(x) x k Γ2

k(x) x k Γ2
k(x)

1 -4 0.005357143 3 -2 -0.876190477 5 0 -5.267857148
1 -3 0.179480356 3 -1 3.396212718 5 1 3.390476193
1 -2 0.030157875 3 0 -5.169222845 5 2 -0.876190477
1 -1 -0.62018585 3 1 3.050997959 5 3 0.114285714
1 0 0.405190305 3 2 -0.521440284 5 4 0.005357143
2 -3 0.114285714 4 -1 3.390476193
2 -2 -0.898003293 4 0 -5.267471864
2 -1 3.05143558 4 1 3.394336554
2 0 -3.892789669 4 2 -0.890424214
2 1 1.619714772 4 3 0.129630938
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Table 8.3: Table : The values of Γ3
k(x) for D = 6

x k Γ3
k(x) x k Γ3

k(x) x k Γ3
k(x)

1 -4 0.0075 3 -2 -0.895 5 0 -9.56565E-10
-3 0.201219054 -1 1.187083732 1 -1.52
-2 -6.42591558 0 -4.201818757 2 0.895
-1 41.88996076 1 16.76945215 3 -0.08
0 -21.49712839 2 -1.773681008 4 -0.0075

2 -3 0.08 4 -1 1.52
-2 0.543082118 0 -0.027948703
-1 20.51182365 1 -1.826481533
0 -82.06937686 2 2.194439765
1 34.07674928 3 0.448540322

Table 8.4: Γ1
k(x) for D=8

x k Γn
k(x) x k Γn

k(x) x k Γn
k(x)

1 -5 0.000194991 3 -3 -0.033577034 5 -1 -0.793009593
-4 0.000717443 -2 0.191753128 0 7.22257E-07
-3 -0.047700022 -1 -0.794074698 1 0.792979906
-2 0.219733432 0 0.000784539 2 -0.191800582
-1 -0.680140889 1 0.812556759 3 0.032939385
0 0.507217499 2 -0.179837258 4 -0.001924038

2 -4 0.002216656 4 -2 0.191998471 6 0 4.68692E-09
-3 -0.032898848 -1 -0.792965813 1 0.79300957
-2 0.19777489 0 6.92098E-05 2 -0.191998693
-1 -0.813897122 1 0.793608685 3 0.03357778
0 0.000572521 2 -0.197376801 4 -0.002217293
1 0.64605985 3 0.035850794 5 -0.000176038
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Table 8.5: Γ2
k(x) for D=8

x k Γn
k(x) x k Γn

k(x) x k Γn
k(x)

1 -5 0.000181372 3 -3 0.151058404 5 -1 2.642066965
-4 -0.06773616 -2 -0.70158017 0 -4.165767151
-3 -0.00524397 -1 2.615840035 1 2.642311955
-2 0.801897681 0 -4.001737362 2 -0.700884042
-1 -1.321855099 1 2.281562774 3 0.157071152
0 0.592570696 2 -0.333068867 4 -0.015710318

2 -4 -0.01064957 4 -2 -0.697892214 6 0 -4.165973294
-3 0.155539507 -1 2.642786614 1 2.642068081
-2 -0.667039954 0 -4.158641108 2 -0.697873791
-1 2.351804576 1 2.606981429 3 0.151010559
0 -3.26161859 2 -0.638609411 4 -0.010642129
1 1.433842719 3 0.106601768 5 -0.001576201

Table 8.6: Γ3
k(x) for D=8

x k Γ2
k(x) x k Γ2

k(x) x k Γ2
k(x)

1 -6 1.59216E-05 3 -4 -0.010572728 5 -2 -0.697869087
1 -5 0.000183379 3 -3 0.151058467 5 -1 2.642066948
1 -4 -0.067787385 3 -2 -0.701582136 5 0 -4.165767025
1 -3 -0.005368392 3 -1 2.615835456 5 1 2.642312057
1 -2 0.803033907 3 0 -4.00169339 5 2 -0.70088533
1 -1 -1.324510789 3 1 2.281459903 5 3 0.157074227
1 0 0.594220598 3 2 -0.333032117 5 4 -0.015710999
2 -5 -0.001630377 4 -3 0.150972896 6 -1 2.642070141
2 -4 -0.010649613 4 -2 -0.697892227 6 0 -4.165973231
2 -3 0.155540647 4 -1 2.642787178 6 1 2.642068066
2 -2 -0.667036582 4 0 -4.158639565 6 2 -0.697873787
2 -1 2.351768407 4 1 2.606968193 6 3 0.151010578
2 0 -3.261532668 4 2 -0.63857852 6 4 -0.010642176
2 1 1.433855822 4 3 0.10658528 6 5 -0.001576212
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